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ABSTRACT 

Current applications, from complex sensor systems (e.g. 

quantified self) to online e-markets acquire vast quantities of 

personal information which usually ends-up on central servers. 

Decentralized architectures, devised to help individuals keep full 

control of their data, hinder global treatments and queries, 

impeding the development of services of great interest. This paper 

promotes the idea of pushing the security to the edges of 

applications, through the use of secure hardware devices 

controlling the data at the place of their acquisition. To solve this 

problem, we propose secure distributed querying protocols based 

on the use of a tangible physical element of trust, reestablishing 

the capacity to perform global computations without revealing any 

sensitive information to central servers. There are two main 

problems when trying to support SQL in this context: perform 

joins and perform aggregations. In this paper, we study the subset 

of SQL queries without joins and show how to secure their 

execution in the presence of honest-but-curious attackers. Cost 

models and experiments demonstrate that this approach can scale 

to nationwide infrastructures.   
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1. INTRODUCTION 
With the convergence of mobile communications, sensors and 

online social networks technologies, we are witnessing an 

exponential increase in the creation and consumption of personal 

data. Some data is freely disclosed by users. Some other is 

transparently acquired by sensor systems through analog 

processes (e.g., GPS tracking units, smart meters, healthcare 

sensors) or mechanical interactions (e.g., as simple as opening a 

door or putting light on). In fine, all this data ends up in servers. It 

represents an unprecedented potential for applications and 

business (e.g., car insurance billing, carbon tax charging, traffic 

decongestion, resource optimization in smart grids, healthcare 

surveillance, participatory sensing). However, as seen with the 

PRISM affair, the public opinion is starting to wonder whether 

these new services are not bringing us closer to the science fiction 

dystopias, since individuals data is carefully scrutinized by 

governmental agencies and companies in charge of processing it 

[28]. It has become clear that centralizing and processing all one’s 

data in a single server is a major problem with regards to privacy 

concerns. Indeed, privacy violations arise from negligence, 

abusive use and attacks and no current server-based approach, 

including cryptography based and server-side secure hardware [1], 

seems capable of closing the gap. 

Many initiatives arise to provide better control to the user over the 

management of her personal data, as suggested by the World 

Economic Forum [18]. In this article, we focus on a novel 

architectural approach to this problem called Trusted Cells [14]. 

This approach capitalizes on emerging practices and hardware 

advances representing a sea change in the acquisition and 

protection of personal data. Trusted Cells push the security to the 

edges of the network, through personal data servers [3] running on 

secure smart phones, set-top boxes, plug computers1 or secure 

portable tokens2 forming a global decentralized data platform. 

Indeed, thanks to the emergence of low-cost secure hardware and 

firmware technologies like ARM TrustZone3, a full Trusted 

Execution Environment (TEE) will soon be present in any client 

device. In this paper, and up to the experiments section, we 

consider that personal data is acquired and/or hosted by secure 

devices but make no additional assumption regarding the technical 

solution they rely on. 

In Trusted Cells, security and privacy come from the conjunction 

of large scale distributed and trusted hardware. However, this 

must not impede on the possibility of executing queries. 

Typically, global queries would be helpful to compute aggregates 

over smart meters without disclosing individual's raw data (e.g., 

compute the mean energy consumption per time period and 

district). Identifying queries also make sense assuming the 

identified subjects consent to participate (e.g., send an alert to 

people older than 80 and living in Memphis if the number of 

people suffering from flu in Tennessee has reached a given 

threshold). Hence, individual's privacy on one side and global 

benefits for the community and business perspectives on the other 

side are contradictory objectives which need to be reconciled. 

Computing SQL-like queries on such distributed infrastructure 

leads to two major and different problems: computing joins 

between data hosted at different locations and computing 

aggregates over this same data. This paper addresses the second 

issue: how to compute global queries over decentralized personal 

data stores while respecting users' privacy? Indeed, we believe 

that the computation of aggregates is central to the many novel 

privacy preserving applications such as smart metering, e-

administration, etc.  

Our objective is to make as few restrictions on the computation 

model as possible. We model the information system as a global 

database formed by the union of a myriad of distributed local data 
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2 www.gd-sfs.com/portable-security-token 
3 www.arm.com/products/processors/technologies/trustzone.php 
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stores (e.g., nation-wide context) and we consider regular SQL 

queries (without external joins involving data from different data 

stores) and a traditional access control model. Hence the context 

we are targeting is different and more general than, (1) querying 

encrypted outsourced data where restrictions are put on the 

predicates which can be evaluated [2, 6, 17, 22], (2) performing 

privacy-preserving queries usually restricted to statistical queries 

matching differential privacy constraints [4, 15] and (3) 

performing Secure-Multi-Party (SMC) query computations which 

cannot meet both query generality and scalability objectives [25].  

The contributions of this paper are: (1) to propose different secure 

query execution techniques to evaluate regular SQL “group by” 

queries over a set of distributed trusted personal data stores, (2) to 

study the range of applicability of these techniques and (3) to 

show that our approach is compatible with nation-wide contexts.  

The rest of this paper is organized as follows. Section 2 states our 

problem. Section 3 introduces a framework to execute simple 

queries and Section 4 concentrates on complex queries involving 

Group By and Having clauses. Section 5 and 6 analyses the 

privacy and performance of these solutions through cost models 

and experiments. Finally, Section 7 discusses related works and 

section 8 concludes. 

2. CONTEXT OF THE STUDY 

2.1 Asymmetric Architecture 
The architecture we consider is decentralized by nature. It is 

formed by a large set of low power personal Trusted Data Servers 

(TDS) embedded in secure devices. Despite the diversity of 

existing hardware platforms, a secure device can be abstracted by 

(1) a Trusted Execution Environment and (2) a (potentially 

untrusted but cryptographically protected) mass storage area (see 

Fig. 1)4. The important assumption is that the TDS code is 

executed by the secure device hosting it and then cannot be 

tampered, even by the TDS holder herself. 

 

Fig. 1. Trusted Data Servers 

We make no assumption about how the data is actually gathered 

by TDSs, this point being application dependent [3, 28]. We 

simply consider that local databases conform to a common 

schema which can be queried in SQL. For example, power meter 

data (resp., GPS traces, healthcare records, etc) can be stored in 

one (or several) table(s) whose schema is defined by the national 

distribution company (resp., an insurance company consortium, 

                                                                 

4 For illustration purpose, the secure device considered in our 

experiments is made of a tamper-resistant microcontroller 

connected to a Flash memory chip.  

the Ministry of Health, etc). Since raw data can be highly 

sensitive, it must be protected by an access control policy defined 

either by the producer organism, by the legislator or by a 

consumer association depending on the context. Hence, each TDS 

is responsible for participating in a distributed query protocol 

while enforcing the access control rules protecting the local data it 

hosts. 

Since TDSs have limited storage and computing resources and 

they are not necessarily always connected, an external 

infrastructure, called hereafter Supporting Server Infrastructure 

(SSI), is required to manage the communications between TDSs, 

run the distributed query protocol and store the intermediate 

results produced by this protocol. Because SSI is implemented on 

regular server(s), e.g., in the Cloud, it exhibits the same low level 

of trustworthiness.  

The computing architecture is said asymmetric in the sense that it 

is composed of a very large number of low power, weakly 

connected but highly secure TDSs and of a powerful, highly 

available but untrusted SSI.  

2.2 Threat Model 
TDSs are the unique elements of trust in the architecture and are 

considered honest. As mentioned earlier, no trust assumption 

needs to be made on the TDS holder herself because a TDS is 

tamper-resistant and enforces the access control rules associated 

to its holder (just like a car driver cannot tamper the GPS tracker 

installed in her car by its insurance company or a customer cannot 

gain access to any secret data stored in her banking smartcard).  

We consider honest-but-curious (also called semi-honest) SSI 

(i.e., which tries to infer any information it can but strictly follows 

the protocol). Considering malicious SSI (i.e., which may tamper 

the protocol with no limit, including denial-of-service) is of little 

interest to this study. Indeed, a malicious SSI is likely to be 

detected with an irreversible political/financial damage and even 

the risk of a class action. 

The objective is then to implement a querying protocol so that (1) 

the querier can gain access only to the final result of authorized 

queries (not to the raw data participating in the computation), as in 

a traditional database systems and (2) intermediate results stored 

in SSI are obfuscated. Preventing inferential attacks by combining 

the result of a sequence of authorized queries as in statistical 

databases and PPDP work (See section 7) is orthogonal to this 

study. 

2.3 Type of queries and scenarios 
We assume that the querier can issue the following form of SQL 

queries5, borrowing the SIZE clause from the definition of 

windows in the StreamSQL standard [9]. This clause is used to 

indicate a maximum number of tuples to be collected, and/or a 

collection duration.  

SELECT <attribute(s) and/or aggregate function(s)>  

FROM <Table(s)>  

[WHERE <condition(s)>]  

[GROUP BY <grouping attribute(s)>]  

[HAVING <grouping condition(s)>] 

[SIZE <size condition(s)>] 

                                                                 

5 As stated in the introduction, we do not consider joins between 

data stored in different TDSs in this article. However, internal 

joins which can be executed locally by each TDS are supported. 



Let us consider the following scenario. The energy distribution 

company would like to issue the following query on its customers' 

smart meters: "SELECT AVG(Cons) FROM Power P, Consumer 

C WHERE C.accomodation='detached house' and C.cid = P.cid 

GROUP BY C.district HAVING Count(distinct C.cid) > 100 SIZE 

50000".  This query computes the mean of energy consumption of 

consumers living in a detached home grouped by district, for 

whose districts where more than 100 consumers answered the poll 

and the poll stops after having globally received at least 50.000 

answers. The semantics of the query are the same as those of a 

stream relational query [13], i.e. the data is pushed from the TDSs 

(i.e., smart meters) to SSI (e.g., a Cloud provider or the 

distribution company itself) in the form of windows. Only the 

smart meter of customers who opt-in for this service will 

participate in the computation. Needless to say that the querier, 

that is the distribution company, must be prevented to see the raw 

data of its customers for privacy concerns6.   

In other scenarios where TDSs are seldom connected (e.g., 

querying mobile PCEHR - Personally Controlled Electronic 

Health Records - embedded in TDSs), the time to collect the data 

is probably going to be quite large. Therefore the challenge is not 

on the overall response time, but rather to show that the query 

computation on the collected data is tractable in reasonable time, 

given local resources. 

3. BASIC QUERYING PROTOCOL 

3.1 Core infrastructure 
Our querying protocols share common basic mechanisms to make 

TDSs aware of the queries to be computed and to organize the 

dataflow between TDSs and queriers such that SSI cannot infer 

anything from the queries and their results.  

Query and result delivery: queries are executed in pull mode. A 

querier posts its query to the SSI and TDSs download it at 

connection time. To this end, SSI can maintain personal 

queryboxes (in reference to mailboxes) where each TDS receives 

queries directed to it (e.g., get the monthly energy consumption of 

consumer C) and a global querybox for queries directed to the 

crowd (e.g., get the mean of energy consumption per month for 

people living in district D). Result tuples are gathered by the SSI 

in a temporary storage area. A query remains active until the SIZE 

clause is evaluated to true by the SSI, which then informs the 

querier that the result is ready. 

Dataflow obfuscation: all data (queries and tuples) exchanged 

between the querier and the TDSs, and between TDSs themselves, 

can be spied by SSI and must therefore be encrypted. However, an 

honest-but-curious SSI can try to conduct frequency-based attack 

[26], i.e., exploiting prior knowledge about the data distribution to 

infer the plaintext values of ciphertexts. Depending on the 

protocols (see later), two kinds of encryption schemes will be 

used to prevent frequency-based attacks. With non-deterministic 

(aka probabilistic) encryption, denoted by nDet_Enc, several 

encryptions of the same message yield different ciphertexts while 

deterministic encryption (Det_Enc for short) always produces the 

same ciphertext for a given plaintext and key [8]. Whatever the 

encryption scheme, symmetric keys must be shared among TDSs: 

we note k1 the symmetric key used by the querier and the TDSs to 

                                                                 

6 At the 1HZ granularity provided by the French Linky power 

meters, most electrical appliances have a distinctive energy 

signature. It is thus possible to infer from the power meter data 

inhabitants activities [23]. 

communicate together and k2 the key shared by TDSs to exchange 

temporary results among them Note that these keys may change 

over time and the way they are delivered to TDSs is context 

dependent7. 

Access control enforcement: TDSs are assumed to answer only 

authorized queries, meaning that they are aware of the access 

control (AC) policy and of the querier credentials. As explained in 

section 2, this policy can be defined by the application provider, 

the legislator or even by a consumer association depending on the 

context. As for the cryptographic material, the policy can be either 

installed at burn time or be downloaded dynamically depending 

on the context. 

3.2 Select-From-Where statements 
Let us first consider simple SQL queries of the form: 

SELECT <attribute(s)> FROM <Table(s)> [WHERE 

<condition(s)>] [SIZE <size condition(s)>] 

These queries do not have a GROUP BY or HAVING clause nor 

involve aggregate functions in the SELECT clause. Hence, the 

selected attributes may (or may not) contain identifying 

information about the individuals. Though basic, these queries 

answer a number of practical use-cases, e.g., a doctor querying the 

embedded healthcare folders of her patients, an energy provider 

willing to offer special prices to people matching a specific 

consumption profile. To compute such queries, the protocol is 

divided in two phases (see Fig. 2): 

Collection phase: (step 1) the querier posts on the SSI a query Q 

encrypted with k1, its credential C signed by an authority and S 

the SIZE clause of the query in cleartext so that SSI can evaluate 

it; (step 2) targeted TDSs download Q when they connect; (step 3) 

each of these TDSs decrypts Q, checks C, evaluates the AC policy 

associated to the querier and computes the result of the WHERE 

clause on the local data; then each TDS either sends its result 

tuples (step 4), or a dummy tuple8 whether the result is empty or 

the querier has not enough privilege to access these local data 

(step 4'), non-deterministically encrypted with k2. The collection 

phase stops when the SIZE condition has been reached. The result 

of the collection phase is actually the result of the query 

complemented with dummy tuples. We call it Covering Result 

(CR). For this form of queries, the aggregation phase presented in 

Fig. 2 is empty. 

Filtering phase: (step 9) SSI partitions the Covering Result with 

the objective to let several TDSs manage next these partitions in 

parallel. The Covering Result being fully encrypted, SSI sees 

partitions as uninterpreted chunks of bytes; (step 10) connected 

TDSs download these partitions. These TDSs may be different 

from the ones involved in the collection phase; (step 11) each of 

                                                                 

7 In a homogeneous context (i.e., where all TDSs are delivered by 

a single provider), these keys or a seed allowing to generate a 

sequence of keys can be installed at burn time. In an open 

context, a PKI infrastructure could be used so that queriers and 

TDSs all have a public-private key pair which can be used to 

exchange symmetric keys. Alternatively, a broadcast encryption 

scheme can also be used to securely exchange keys between 

TDSs and querier.  

8 even if the query is encrypted, sending dummy tuples avoids the 

SSI to learn the query selectivity (and from that guess the 

query). It is also helpful in the case where SSI and querier are 

the same entity. 



these TDS decrypts the partition and filters out dummy tuples; 

(step 12) each TDS sends back the true tuples encrypted with key 

k1 to SSI, which finally concatenates all results and informs the 

querier that she can download the result (step 13). 

 

Fig. 2. Querying protocol 

Informally speaking, the correctness, security and efficiency 

properties of the protocol are as follows: 

Correctness. Since SSI is honest-but-curious, it will deliver to the 

querier all tuples returned by the TDSs. Dummy tuples are 

marked so that they can be recognized and removed after 

decryption by each TDS. Therefore the final result contains only 

true tuples. If a TDS goes offline in the middle of processing a 

partition, SSI resends that partition to another available TDS after 

a given timeout so that the result is complete. 

Security. Since SSI does not know key k1, it cannot decrypt the 

query nor the result tuples. TDSs use nDet_Enc for encrypting the 

result tuples so that SSI cannot launch any frequency-based attack 

nor can detect dummy tuples. But what if SSI acquires a TDS 

with the objective to get the cryptographic material? As stated in 

Section 2, TDS code cannot be tampered, even by its holder. 

Whatever the information decrypted internally, the only output 

that a TDS can deliver is a set of encrypted tuples, which does not 

represent any benefit for SSI. And what if SSI colludes with the 

querier? For the same reason, SSI will only get the same 

information as the querier (i.e., the final result in clear text and no 

more). 

Efficiency. The efficiency of the protocol is linked to the 

frequency of TDSs connection and to the SIZE clause. Both the 

collection and filtering phases are run in parallel by all connected 

TDSs and no time-consuming task is performed by any of them. 

As the experiment section will clarify, each TDS manages 

incoming partitions in streaming because the internal time to 

decrypt the data and perform the filtering is significantly less than 

the time needed to download the data. 

While important in practice, executing Select-From-Where 

queries in the Trusted Cells context shows no intractable 

difficulties and the main objective of this section is to present the 

query framework in an easy to understand way. Executing Group 

By queries is far more challenging. The next section will present 

different alternatives to tackle this problem. Rather than trying to 

get an optimal solution, which is fatally context dependent, the 

objective is to explore the design space and show that different 

querying protocols may be devised to tackle a broad range of 

situations. 

4. GROUP BY QUERIES  

4.1 Generic query evaluation protocol 

Let us now consider general SQL queries of the form9: 

SELECT <attribute(s) and/or aggregate function(s)> FROM 

<Table(s)> [WHERE <condition(s)>] [GROUP BY <grouping 

attribute(s)>] [HAVING <grouping condition(s)>] [SIZE <size 

condition(s)>] 

These queries are more challenging to compute because they 

require performing set-oriented computations over intermediate 

results sent by TDSs to SSI. The point is that TDSs usually have 

limited RAM, limited computing resources and limited 

connectivity. It is therefore unrealistic to devise a protocol where 

a single TDS downloads the intermediate results of all 

participants, decrypts them and computes the aggregation alone. 

On the other hand, SSI cannot help much in the processing since 

(1) it is not allowed to decrypt any intermediate results and (2) it 

cannot gather encrypted data into groups based on the encrypted 

value of the grouping attributes, denoted by AG={Gi}, without 

gaining some knowledge about the data distribution. This would 

indeed violate our security assumption since the knowledge of AG 

distribution opens the door to frequency-based attacks by SSI. In 

the extreme case where AG contains both quasi-identifiers and 

sensitive values, attribute linkage would become obvious. Finally, 

the querier cannot help in the processing either since she is only 

granted access to the final result, and not to the raw data. 

To solve this problem, we suggest a generic aggregation protocol 

divided into three phases (see Fig. 2): 

Collection phase: similar to the basic protocol.  

Aggregation phase: (step 5) SSI partitions the result of the 

collection phase; (step 6) connected TDSs (may be different from 

the ones involved in the collection phase) download these 

partitions; (step 7) each of these TDS decrypts the partition, 

eliminates the dummy tuples and computes partial aggregations 

(i.e., aggregates data belonging to the same group inside each 

partition); (step 8) each TDS sends its partial aggregations 

encrypted with k2 back to SSI; depending on the protocol (see 

next sections), the aggregation phase is iterative, and continues 

until all tuples belonging to the same group have been aggregated 

(steps 6', 7', 8'); The last iteration produces a Covering Result 

containing a single (encrypted) aggregated tuple for each group.  

Filtering phase: this phase is similar to the basic protocol except 

that the role of step 11 is to eliminate the groups which do not 

satisfy the HAVING clause instead of eliminating dummy tuples.  

The rest of this section presents different variations of this generic 

protocol, depending on which encryption scheme is used in the 

collection and aggregation phases, how SSI constructs the 

partitions, and what information is revealed to SSI. Each solution 

has its own strengths and weaknesses and therefore is suitable for 

a specific situation. Three kinds of solutions are proposed: secure 

aggregation, noise-based, and histogram-based. They are 

                                                                 

9 For the sake of clarity, we concentrate on the management of 

distributive, algebraic and holistic aggregate functions identified 

in [27] as the most prominent and useful ones. 



subsequently compared in terms of privacy protection (Section 5) 

and performance (Section 6). 

4.2 Secure Aggregation protocol 
This protocol, denoted by S_Agg and detailed in Fig. 4, 

instantiates the generic protocol as follows. In the collection 

phase, each participating TDS encrypts its result tuples using 

nDet_Enc to prevent any frequency-based attack by SSI. The 

consequence is that SSI cannot get any knowledge about the 

group each tuple belongs to. Thus, during step 5, tuples from the 

same group are randomly distributed among the partitions. This 

imposes the aggregation phase to be iterative, as illustrated in 

Fig. 3. At each iteration, TDSs download partitions containing a 

sequence of (AG, Aggregate) value pairs ((City, 

Energy_consumption) in the example) and sends back to SSI a 

smaller sequence of (AG, Aggregate) value pairs where values of 

the same group have been aggregated. SSI gathers these partial 

aggregations to form new partitions, and so on and so forth until a 

single partition is produced, which contains the final aggregation. 

 

Fig. 3. (iterative partial) aggregation 

 

Fig. 4. Secure Aggregation algorithm 

Correctness. The requirement for S_Agg to terminate is that TDSs 

have enough resources to perform partial aggregations. Each TDS 

needs to maintain in memory a data structure called partial 

aggregate which stores the current value of the aggregate function 

being computed for each group. Each tuple read from the input 

partition contributes to the current value of the aggregate function 

for the group this tuple belongs to. Hence the partial aggregate 

structure must fit in RAM (or be swapped in stable storage at 

much higher cost). If the number of groups is high (e.g., grouping 

on a key attribute) and TDSs have a tiny RAM, this may become a 

limiting factor. 

Security. In all phases, the information revealed to SSI is a 

sequence of tuples or value pairs encrypted non-deterministically 

(nDet_Enc) so that SSI cannot conduct any frequency-based 

attack. 

Efficiency. The aggregation process is such that the parallelism 

between TDSs decreases at each iteration, up to have a single 

TDS producing the final aggregation. Note again that incoming 

partitions are managed in streaming because the cost to download 

the data significantly dominates the rest.  

4.3 Noise-based protocols 
In these protocols, called Noise_based and detailed in Fig. 5, 

Det_Enc is used during the collection phase on the grouping 

attributes AG. This allows SSI to assemble tuples belonging to the 

same groups in the same partitions. However, using Det_Enc 

reveals the distribution of AG to SSI. To prevent this disclosure, 

the fundamental idea is that TDSs add some noise (i.e., fake 

tuples) to the data in order to hide the real distribution. The added 

fake tuples must have identified characteristics, as dummy tuples, 

such that TDSs can filter them out in a later step. The 

aggregation phase is roughly similar to S_Agg, except that the 

content of partitions is no longer random, thereby accelerating 

convergence and allowing parallelism up to the final iteration. 

Two solutions are introduced to generate noise: random (white) 

noise, and noise controlled by complementary domains. 

 

Fig. 5. Random noise algorithm 

Random (white) noise solutions. In this solution, denoted 

Rnf_Noise, nf  fake tuples are generated randomly then added. 

TDSs apply Det-Enc on AG, and nDet_Enc on ĀG (the attributes 

not appearing in the GROUP BY clause). However, because the 

Algorithm  R _Noise (K1, K2, Q, nf) 
Input:  (TDS’s side): the cryptographic keys (K1,K2), 
query Q from Querier 

Output:  the final aggregation Ωfinal. 
1  begin Collection phase 
2     Each connected TDS sends (nf+1) tuples of the  

   form tup  = (E (A ),nE (Ā ) to SSI

3  end 
4  begin Aggregation phase  
5    repeat //(on SSI side) 
6       SSI groups tup  with the same E (A )  
7       TDSs connect to SSI to download these groups  
      (in data stream)  
8    until all groups in SSI have been sent to TDSs  

9    foreach TDS ∈ TDSs do //(on TDS side) 
10     repeat 
11       Receive tup  from SSI 

12       Decrypt tup : A  ← E (A ); Ā  ← nE (Ā ) 

13       Filter false tuples (based on the identified  
    characteristics) 
14       Compute the aggregate values for the group  
    A : [A , AGG] 
15     until no more tuples received from SSI  
16     Encrypt this aggregate value: [E (A ),nE (AGG)] 
17     Send this encrypted aggregation to SSI 
18 end 
19 Filtering phase //evaluate HAVING clause 
20 return nE (Ωfinal) to Querier by SSI  

Algorithm  S_Agg (K1, K2, Q, α) 
Input: (TDS’s side): the cryptographic keys (K1,K2), 
query Q from Querier 

   (SSI’s side): reduction factor α (α ≥ 2). 
Output:  the final aggregation Ωfinal. 
1  begin Collection phase 
2    Each connected TDS sends a tuple of the form  
  tup  = nE (tup) to SSI 
3  end 
4  begin Aggregation phase 
5    repeat 
6      repeat 
7        TDSs connect to SSI and SSI chooses tup  (or 

encrypted partial aggregation Ω) randomly to parallel 

feed these TDSs (in data stream) 

8        foreach TDS ∈ TDSs do 
9    Receive tup  (or Ω) from SSI 

10    Decrypt tup  (or Ω): tup ← nE (tup )  

             Ω ← nE (Ω) 

11    Add to its partial aggregation: Ω = Ω ⊕ tup            

                  Ω  = Ω  ⊕ Ω   
12     until all tup  (or Ω) in SSI have been sent to  

      TDSs 

13     foreach TDS ∈ TDSs do 
14    Encrypt its partial aggregation: Ω ← nE (Ω)   
15    Send Ω to SSI 

16    until nΩe = 1  

17  end 
18  Filtering phase //evaluate HAVING clause 
19  return nE (Ωfinal) by SSI to Querier. 



fake tuples are randomly generated, the distribution of mixed 

values may not be different enough from that of true values 

especially if the disparity in frequency among AG is big. To 

overcome this difficulty, a large quantity of fake tuples (nf >>1) 

must be injected to make the fake distribution dominate the true 

one. 

Noise controlled by complementary domains. This solution, 

called C_Noise, overcomes the limitation of Rnf_Noise by 

generating fake tuples based on the prior knowledge of the AG 

domain cardinality. Let us assume that AG domain cardinality is nd 

(e.g., for attribute Age, nd ≈ 130), a TDS will generate nd-1 fake 

tuples, one for each value different from the true one. The 

resulting distribution is totally flat by construction. However, if 

the domain cardinality is not readily available, a cardinality 

discovering algorithm must be launched beforehand (see 4.4). 

Correctness. True tuples are grouped in partitions according to the 

value of their AG attributes so that the aggregate function can be 

computed correctly. Fake tuples are eliminated during the 

aggregation phase by TDSs thanks to their identified 

characteristics and do not contribute to the computation. 

Security. Although TDSs apply Det-Enc on AG, AG distribution 

remains hidden to SSI thanks to either white noise such that the 

fake distribution dominates the true one or controlled noise 

producing a flat distribution. 

Efficiency. TDSs do not need to materialize a large partial 

aggregate structure as in S_Agg because each partition contains 

tuples belonging to a small set of (ideally one) groups. 

Additionally, this property guarantees the convergence of the 

aggregation process and increases the parallelism in all phases of 

the protocol. However, the price to pay is the production and the 

elimination afterwards of a potentially very high number of fake 

tuples (the value is algorithm and data dependent). 

4.4 Equi-depth histogram-based protocol  
Getting a prior knowledge of the domain extension of AG allows 

significant optimizations as illustrated by C_Noise. Let us go one 

step further and exploit the prior knowledge of the real 

distribution of AG attributes. The idea is no longer to generate 

noisy data but rather to produce a uniform distribution of true data 

sent to SSI by grouping them into equi-depth histograms, in a way 

similar to [21]. The protocol, named ED_Hist, works as follows. 

Before entering the protocol, the distribution of AG attributes must 

be discovered and distributed to all TDSs. This process needs to 

be done only once and refreshed from time to time instead of 

being run for each query. The discovery process is similar to 

computing a Count function Group By AG and can therefore be 

performed using one of the protocol introduced above. During the 

collection phase, each TDS uses this knowledge to calculate 

nearly equi-depth histograms, that is a decomposition of the AG 

domain into buckets holding nearly the same number of true 

tuples. Each bucket is identified by a hash value giving no 

information about the position of the bucket elements in the 

domain. Then the TDS allocates its tuple(s) to the corresponding 

bucket(s) and sends to SSI couples of the form (h(bucketId), 

nDet_Enc(tuple)). During the partitioning step of the aggregation 

phase, SSI assembles tuples belonging to the same buckets in the 

same partitions. Each partition may contain several groups since a 

same bucket holds several distinct values. The first aggregation 

step computes partial aggregations of these partitions and returns 

to SSI results of the form (Det_Enc(group), nDet_Enc(partial 

aggregate)). A second aggregation step is required to combine 

these partial aggregations and deliver the final aggregation. 

Correctness. Only true tuples are delivered by TDSs and they are 

grouped in partitions according to the bucket they belong to. 

Buckets are disjoint and partitions contain a small set of grouping 

values so that partial aggregations can be easily computed by 

TDSs. 

Security. SSI only sees a nearly uniform distribution of 

h(bucketId) values and cannot infer any information about the true 

distribution of AG attributes. Note that h(bucketId) plays here the 

same role as Det_Enc(bucketId) values but is cheaper to compute 

for TDSs. 

 

Fig. 6. Histogram-based algorithm 

Efficiency. TDSs do not need to materialize a large partial 

aggregate structure as in S_Agg because each partition contains 

tuples belonging to a small set of groups during the first phase and 

to a single group during the second phase. As for C_Noise, this 

property guarantees convergence of the aggregation process and 

maximizes the parallelism in all phases of the protocol. But 

contrary to C_Noise, this benefit does not come at the price of 

managing fake tuples. 

This section shows that the design space for executing complex 

queries with Group By is large. It presented three rather different 

alternatives for computing these queries and provided a rough 

Algorithm  ED_Hist (K1, K2, Q) 
Input: (TDS’s side): the cryptographic keys (K1, K2), 
query Q from Querier.  

Output: the final aggregation Ωfinal. 
1  Call distribution discovering algorithm to 
discover the distribution 
2  begin Collection phase 
3    Each connected TDS sends a tuple of the form tup  

= (h(A ),nE (Ā )) to the SSI. // h(A ) is the mapping 

function applied on the A .  
4  end 
5  begin First Aggregation phase  
6     repeat //(on SSI side) 
7       SSI groups tup  with the same h(A )  
8       TDSs connect to SSI to parallel download  
    these groups 
9     until all groups in SSI have been sent to TDSs 

10    foreach TDS ∈ TDSs do //(on TDS side) 
11      repeat 
12        Receive tup  from SSI 

13        Decrypt tup : A  ← h (A ); Ā  ← nE (Ā ) 

14        Compute the aggregate values for all groups  
     contained in h(A ): [A , AGG ]  
15      until no more tuples received from SSI  
16      Encrypt these aggregate values: tup  =  
    [E (A ),nE (AGG )] 

17      Send these encrypted aggregations to SSI 
18  end 
19  begin Second Aggregation phase  
20    repeat //(on SSI side) 
21      SSI groups tup  with the same E (A )  
22      TDSs connect to SSI to parallel download  
    these groups  
23    until all groups in SSI have been sent to TDSs 

24    foreach TDS ∈ TDSs do //(on TDS side) 
25      repeat 
26        Receive tup  from SSI 

27        Decrypt tup : A  ← E (A ); AGG ← nE (AGG ) 

28        Compute the aggregate values for only one  
     group A : [A , AGG]  
29      until no more tuples received from SSI 
30      Encrypt these aggregate values: [E (A ),  
                 nE (AGG)] 
31      Send these encrypted aggregations to SSI 
32  end 
33  Filtering phase //evaluate HAVING clause 
34  return nE (Ωfinal) to Querier by SSI 



discussion about their respective correctness, security and 

efficiency. The next sections compare respectively the security 

and performance of these alternatives in a deeper way to assess 

whether one solution dominates the others in all situations or 

which parameters are the most influential in the selection of the 

solution best adapted to each context. 

5. INFORMATION EXPOSURE ANALYSIS 
In this section, in order to quantify the confidentiality of each 

algorithm, we measure the information exposure of the encrypted 

data they reveal to SSI by using the approach proposed in [12] 

which introduces the concept of coefficient to assess the exposure. 

To illustrate, let us consider the example in Fig. 7 where Fig. 7a is 

taken from [12] and Fig. 7b is the extension of [12] applied in our 

context. The plaintext table Accounts is encrypted in different 

ways corresponding to our proposed protocols. To measure the 

exposure, we consider the probability that an attacker can 

reconstruct the plaintext table (or part of the table) by using the 

encrypted table and his prior knowledge about global distributions 

of plaintext attributes.  

 

Fig. 7. Encryptions and IC tables 

Although the attacker does not know which encrypted column 

corresponds to which plaintext attribute, he can determine the 

actual correspondence by comparing their cardinalities. Namely, 

she can determine that IA, IC, and IB correspond to attributes 

Account, Customer, and Balance respectively. Then, the IC table 

(the table of the inverse of the cardinalities of the equivalence 

classes) is formed by calculating the probability that an encrypted 

value can be correctly matched to a plaintext value. For example, 

with Det_Enc, P(α = Alice) = 1 and P(κ = 200) = 1 since the 

attacker knows that the plaintexts Alice and 200 have the most 

frequent occurrences in the Accounts table (or in the global 

distribution) and observes that the ciphertexts α and κ have 

highest frequencies in the encrypted table respectively. The 

attacker can infer with certainty that not only α and κ represent 

values Alice and 200 (encryption inference) but also that the 

plaintext table contains a tuple associating values Alice and 200 

(association inference). The probability of disclosing a specific 

association (e.g., <Alice,200>) is the product of the inverses of 

the cardinalities (e.g., P(<α,κ> = <Alice,200>) = P(α = Alice)× 

P(κ = 200) = 1). The exposure coefficient Ԑ of the whole table is 

estimated as the average exposure of each tuple in it: 

 

Here, n is the number of tuples, k is the number of attributes, and 

ICi,j is the value in row i and column j in the IC table. Let’s Nj be 

the number of distinct plaintext values in the global distribution of 

attribute in column j (i.e., Nj ≤ n). 

Using nDet_Enc, because the distribution of ciphertexts is 

obfuscated uniformly, the probability of guessing the true 

plaintext of α is P(α = Alice) = 1/5. So, ICi,j = 1/Nj for all i, j, and 

thus the exposure coefficient of S_Agg is: 

 

For the nearly equi-depth histogram, each hash value can 

correspond to multiple plaintext values. Therefore, each hash 

value in the equivalence class of multiplicity m can represent any 

m values extracted from the plaintext set, that is, there are  

different possibilities. The identification of the correspondence 

between hash and plaintext values requires finding all possible 

partitions of the plaintext values such that the sum of their 

occurrences is the cardinality of the hash value, equating to 

solving the NP-Hard multiple subset sum problem [11]. We 

consider two critical values of collision factor h (defined as the 

ratio G/M between the number of groups G and the number M of 

distinct hash values) that correspond to two extreme cases (i.e., 

the least and most exposure) of ɛED_Hist: (1) h = G: all plaintext 

values collide on the same hash value and (2) h = 1: distinct 

plaintext values are mapped to distinct hash values (i.e., in this 

case, the nearly equi-depth histogram becomes Det_Enc since the 

same plaintext values will be mapped to the same hash value). 

In the first case, the optimal coefficient exposure of histogram is:

 
because ICi,j = 1/Nj for all i, j. For the second case, the experiment 

in [11] (where they generated a number of random databases 

whose number of occurrences of each plaintext value followed a 

Zipf distribution) varies the value of h to see its impact to ɛED_Hist. 

This experiment shows that the smaller the value of h, the bigger 

the ɛED_Hist and ɛED_Hist reaches maximum value (i.e., max(ɛED_Hist) 

≈ 0.4) when h = 1.  

For Noise_based algorithms, when nf = 0 (i.e., no fake tuples), 

Rnf_Noise becomes Det_Enc and therefore it has maximum 

exposure in this case. If nf is not big enough, since each TDS 

generates very few fake tuples, the transformed distribution 

cannot hide some ciphertexts with remarkable (highest or lowest) 

frequencies, increasing the exposure. The bigger the nf, the lower 

the probability that these ciphertexts are revealed. Exceptionally, 

when the noise is not random (but controlled by domain 

cardinality of AG), C_Noise has better exposure since all 

ciphertexts have the same frequency (ICi,j = 1/Nj for all i, j): 

𝜀𝐶_𝑁𝑜𝑖𝑠𝑒 =
1

 𝑛𝑓+1 ∗𝑛
  𝐼𝐶𝑖,𝑗

𝑘
𝑗=1

 𝑛𝑓+1 ∗𝑛

𝑖=1
  

=
1

𝑛𝑑∗𝑛
  

1

𝑁𝑗

𝑘
𝑗=1

𝑛𝑑∗𝑛
𝑖=1  = 1/  𝑁𝑗

𝑘
𝑗=1   

The exposure coefficient gets the highest value when no 

encryption is used at all and therefore all plaintexts are displayed 

to attacker. In this case, ICi,j = 1 ∀ i, j, and thus the exposure 

coefficient of plaintext table is (trivially): 
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The information exposures among our proposed solutions are 

summarized in Fig. 8. In conclusion, S_Agg is the most secure 

protocol. To reach the highest secure level as the S_Agg, other 

protocols must pay some high prices. Specifically, Rnf_Noise has 

to generate a very large amount of noise regardless of the value of 

G; C_Noise also incurs large noise if G is big; and ED_Hist must 

have a significant collision factor. 

 

Fig. 8. Information exposure among protocols 

6. EXPERIMENTAL EVALUATION  
This section evaluates the respective performance of our 

solutions. We use an analytical cost model for this evaluation and 

calibrate this model with basic performance measurements 

performed on a real hardware platform (see 6.2). This choice lies 

in the difficulty of setting up a very large scale platform of TDSs 

today while our main objective is to assess whether our protocols 

can scale up to nation-wide contexts.  

6.1 Cost Model 
The metrics of interest in this evaluation are the following: 

 PTDS: number of TDSs that participate in the computation of a 

given phase (depending on the protocol, not all connected TDSs 

may be involved in a computation). This metric reflects the 

parallelism level of a protocol. 

 LoadQ: global resource consumption for evaluating a query Q, 

expressed as the total size of data that TDSs and SSI have to 

process. This metric reflects the scalability of the solution in 

terms of capacity of the system to manage a large set of queries 

in parallel and/or a large set of TDSs to be queried. 

 TQ: query response time, reflecting the responsiveness of the 

protocol. Since the time in the collection phase is application-

dependent and is similar for all protocols, and since the time in 

the filtering phase is also similar for all protocols, TQ focuses 

on the time spent on the aggregation phase, which is actually 

the most complex phase. 

 Tlocal: average time that each participating TDS spends to 

compute the query. This metric reflects the feasibility of the 

solution because the longer this time, (1) the lower the 

probability that TDS stays connected during this time and (2) 

the higher the burden for an individual to accept participating in 

distributed queries. 

The weight associated to each of these metrics is context-

dependent, as discussed in Section 6.4. These metrics are 

computed based on the following main parameters: Nt total 

number of encrypted tuples sent to SSI by TDSs (without loss of 

generality, we consider in the model that each TDS produces a 

single tuple in the collection phase, hence Nt reflects also the 

number of TDSs participating in the query); G number of groups; 

st size of an encrypted tuple; Tt time spent by each TDS to process 

one tuple (including transfer, cryptographic and aggregation 

time); 𝑁𝑖
𝑇𝐷𝑆  number of TDSs that participate in the ith partial 

aggregation phase (protocol dependent); α, nNB, nED, reduction 

factors in the aggregation phase in S_Agg, Noise_based and 

ED_Hist respectively; nf  number of fake tuples per true tuple in 

Noise_based protocols; h the average number of groups 

corresponding to each hash value in ED_Hist.  

6.1.1 Secure Aggregation protocol 
Because the aggregation phase is iterative, the time spent in this 

phase is the total time for all iterative steps. In the first step of this 

phase, the time required to download data from SSI and return 

temporary result is: 𝑡1 = 𝑁𝑡

𝑁1
𝑇𝐷𝑆 ∗ 𝑇𝑡 ; 𝑡1

′ = 𝐺 ∗ 𝑇𝑡 . 

Similarly, in step i of the aggregation phase, we have: 

𝑡𝑖 =
𝑁𝑖−1

𝑇𝐷𝑆

𝑁𝑖
𝑇𝐷𝑆 ∗ 𝐺 ∗ 𝑇𝑡 ; 𝑡𝑖

′ = 𝐺 ∗ 𝑇𝑡  (i = 2 – n), with n is the total 

number of iterative steps in this phase.  

For simplicity, we assume that the reduction factor α in every step 

is similar:  

𝛼 =
𝑁𝑡/𝐺

𝑁1
𝑇𝐷𝑆 =

𝑁1
𝑇𝐷𝑆

𝑁2
𝑇𝐷𝑆 = ⋯ =

𝑁𝑛−1
𝑇𝐷𝑆

𝑁𝑛
𝑇𝐷𝑆  .  

Since 𝑁𝑛
𝑇𝐷𝑆 = 1, the number of iterative steps is 𝑛 =  log𝛼

𝑁𝑡

𝐺
  

The computation time of S_Agg is: 

 𝑇𝑄
𝑆_𝐴𝑔𝑔

=   𝑡𝑖 + 𝑡𝑖
′ =   𝛼 + 1 log𝛼

𝑁𝑡

𝐺
 ∗ 𝐺 ∗ 𝑇𝑡

𝑛
𝑖=1     

To find the optimal time for aggregation phase, let f(α) = (α + 

1)logα(Nt/G).  

We have: 
𝑑𝑓

𝑑𝛼
=

𝛼∗𝑙𝑛𝛼 −(𝛼+1)

𝛼∗(𝑙𝑛𝛼 )2
∗ 𝑙𝑛  

𝑁𝑡

𝐺
  

Solving the equation 
𝑑𝑓

𝑑𝛼
= 0 gives α ≈ 3.6.  

We call αop = 3.6 the optimal reduction factor (i.e., 𝑇𝑄
𝑆_𝐴𝑔𝑔

 gets 

the minimum value when αop = 3.6). 

These other metrics are calculated as follows: 

𝑃𝑇𝐷𝑆
𝑆_𝐴𝑔𝑔

=  𝑁𝑖
𝑇𝐷𝑆𝑛

𝑖=1 =
𝑁𝑡

𝐺
∗  𝛼−𝑖𝑛

𝑖=1   

𝐿𝑜𝑎𝑑𝑄
𝑆_𝐴𝑔𝑔

=  𝑁𝑡 + 𝛼𝐺  𝑁𝑖
𝑇𝐷𝑆𝑛

𝑖=2 + 𝐺  𝑁𝑖
𝑇𝐷𝑆𝑛

𝑖=1  ∗ 𝑠𝑡   

                   =   1 + 2  𝛼−𝑖𝑛
𝑖=1  ∗ 𝑁𝑡 ∗ 𝑠𝑡  

𝑇𝑙𝑜𝑐𝑎𝑙
𝑆_𝐴𝑔𝑔

=
 𝑁𝑡+𝛼𝐺  𝑁𝑖

𝑇𝐷𝑆𝑛
𝑖=2  ∗𝑇𝑡

𝑃𝑇𝐷𝑆
𝑆_𝐴𝑔𝑔   

6.1.2 Noise_based protocols 
Because all tuples belonging to one group may spread over 

multiple partitions, the aggregation phase includes two steps. 

In the first step, each group contains (nf + 1) * Nt / G tuples in 

average, and we assume that there are nNB TDSs handling tuples 

belonging to one group. The time required to download data from 

SSI and return temporary result in this step is: 

𝑡1 =
 𝑛𝑓+1 ∗𝑁𝑡

𝑛𝑁𝐵 ∗𝐺
∗ 𝑇𝑡  ; 𝑡1

′ = 𝑇𝑡  ; 

In the second step, each TDS receives nNB tuples belonging to one 

group to compute the final aggregation, so the time required is: 

𝑡2 = 𝑛𝑁𝐵 ∗ 𝑇𝑡  ; 𝑡2
′ = 𝑇𝑡  ; 

The computation time of Rnf_Noise is: 

𝑇𝑄

𝑅𝑛𝑓 _𝑁𝑜𝑖𝑠𝑒
=  𝑛𝑁𝐵 +

 𝑛𝑓+1 ∗𝑁𝑡

𝑛𝑁𝐵 ∗𝐺
+ 2 ∗ 𝑇𝑡   
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Apply the Cauchy’s inequality, we have: 

 𝑛𝑁𝐵 +
 𝑛𝑓+1 ∗𝑁𝑡

𝑛𝑁𝐵 ∗𝐺
≥ 2 ∗  

 𝑛𝑓+1 ∗𝑁𝑡

𝐺
 

The computation time of Rnf_Noise gets optimal value when the 

optimal reduction factor is:  𝑛𝑁𝐵 =  
 𝑛𝑓+1 ∗𝑁𝑡

𝐺
 . 

𝑃𝑇𝐷𝑆

𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒
=  𝑛𝑁𝐵 + 1 ∗ 𝐺  

𝐿𝑜𝑎𝑑𝑄

𝑅𝑛𝑓 _𝑁𝑜𝑖𝑠𝑒
=   𝑛𝑓 + 1 ∗ 𝑁𝑡 + 2𝑛𝑁𝐵 ∗ 𝐺 + 𝐺 ∗ 𝑠𝑡   

𝑇𝑙𝑜𝑐𝑎𝑙

𝑅𝑛𝑓 _𝑁𝑜𝑖𝑠𝑒
=  

 𝑛𝑓+1 ∗𝑁𝑡

𝐺
∗ 𝑇𝑡           

6.1.3 Histogram-based protocol 
Let’s h be the average number of groups corresponding to each 

hash value. By applying the Cauchy’s inequality and the same 

mechanism as in Rnf_Noise, the optimal computation time is: 

𝑇𝑄(𝑜𝑝 )
𝐸𝐷_𝐻𝑖𝑠𝑡 =  3 ∗  

∗𝑁𝑡

𝐺

3
+  + 2 ∗ 𝑇𝑡  when the reduction factors 

in each step are: 𝑛𝐸𝐷 =   
∗𝑁𝑡

𝐺
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 ; 𝑚𝐸𝐷 =  
∗𝑁𝑡

𝐺

3
  

Then, the other metrics are based on these factors as follows: 

𝑃𝑇𝐷𝑆
𝐸𝐷_𝐻𝑖𝑠𝑡 =  

𝑛𝐸𝐷


+ 𝑚𝐸𝐷 + 1 ∗ 𝐺  

𝐿𝑜𝑎𝑑𝑄
𝐸𝐷_𝐻𝑖𝑠𝑡 =  𝑁𝑡 + 2𝑛𝐸𝐷 ∗ 𝐺 + 2𝑚𝐸𝐷 ∗ 𝐺 + 𝐺 ∗ 𝑠𝑡   

𝑇𝑙𝑜𝑐𝑎𝑙
𝐸𝐷_𝐻𝑖𝑠𝑡 =

 𝑁𝑡+𝑛𝐸𝐷 ∗𝐺+𝑚𝐸𝐷 ∗𝐺 ∗𝑇𝑡

 𝑛𝐸𝐷 /+𝑚𝐸𝐷 +1 ∗𝐺
  

Note that this is just a subset of the complete cost model which 

can be found in the technical report [20]. 

6.2 Unit test 
To calibrate our model, we performed unit tests on the 

development board presented in Fig. 9a. This board exhibits 

hardware characteristics representative of secure tokens-like 

TDSs, including those provided by Gemalto (the smartcard world 

leader), our industrial partner. This board has the following 

characteristics: the microcontroller is equipped with a 32 bit RISC 

CPU clocked at 120 MHz, a crypto-coprocessor implementing 

AES and SHA in hardware (encrypting or decrypting a block of 

128bits costs 167 cycles), 64 KB of static RAM, 1 MB of NOR-

Flash and is connected to a 1 GB external NAND-Flash and to a 

smartcard chip hosting the cryptographic material. The device can 

communicate with the external world through USB full speed. 

The speed in theory is 12 Mbps but the real speed measured with 

the device is around 7.9 Mbps.  

We measured on this device the performance of the main 

operations influencing the global cost, that is: encryption, 

decryption, hashing, communication and CPU time, and put these 

numbers as constants in the formulas. Fig. 9b depicts the internal 

time consumption of this platform to manage partitions of 4KB. 

The transfer cost dominates the other costs due to the network 

latencies. The CPU cost is higher than cryptographic cost because 

(1) the cryptographic operations are done in hardware by the 

crypto-coprocessor and (2) TDS spends CPU time to convert the 

array of raw bytes (resulting from the decryption) to the number 

format for calculation later. Encryption time is much smaller than 

decryption time because only the result of the aggregation of each 

partition needs to be encrypted.  

Other TDSs (e.g., smart meters) may be more powerful than smart 

tokens, although client-based hardware security is always 

synonym of low power. Anyway, as this section will make clear, 

the internal time consumption turns out not to be the limiting 

factor. Hence our choice of considering low-power TDSs in this 

experiment is expected to broaden our conclusions. 

  

a)    b) 

Fig. 9. Hardware device & its internal time consumption 

6.3 Performance comparisons 
In this study, we concentrate on the performance of Group By 

queries since they are the most challenging to compute. We vary 

the dataset size (Nt varies from 5 to 65 million), the number of 

groups (G varies from 1 to 106) as well as the number of TDSs 

participating in the computation as a percentage of all TDSs 

connected at a given time (varying from 1% to 100%). We fix two 

parameters and vary the others. When the parameters are fixed, 

Nt=106, G=103, st=16b, Tt=16μs, h=5 and the percentage of TDS 

connected is 10% of Nt. We also compute and use the optimal 

value for all reduction factors as well as for𝑁𝑖
𝑇𝐷𝑆 . In the figures, 

we plot two curves for Rnf_Noise protocols, R2_Noise (nf = 2) and 

R1000_Noise (nf = 1000) to capture the impact of the ratio of fake 

tuples. We summarize below the main conclusions of the 

performance evaluation. A more detailed study is provided in a 

technical report [20]. 

Level of parallelism (PTDS). Fig. 10a depicts PTDS varying G. For 

S_Agg, when G increases, the iterative merging of partial 

aggregations has lower convergence and therefore less 

participating TDSs can be mobilized in parallel to build the 

aggregations. On the contrary, other protocols can process groups 

in parallel and independently, so that the level of parallelism 

increases linearly with G. Fig. 10b depicts PTDS varying Nt. 

Noise_based protocols seem to benefit most from an increase of 

Nt in terms of parallelism but the benefit is actually fictitious; it is 

due to the fact that a higher number of fake tuples are produced 

and need to be processed (though in parallel). 

Resource consumption (LoadQ). Fig. 10c and 10d show LoadQ 

respectively in terms of G and Nt. Not surprisingly, the total load 

of Noise_based protocols is highest because of the extra 

processing incurred by fake tuples. However, nf depends only on 

Nt, so when G increases, the total load of Noise_based protocols 

remain constant. Other protocols generate much lower and 

roughly comparable loads. 

Query response time (TQ). Fig. 10e shows the impact of G over 

TQ. In all protocols but S_Agg, TQ depends on the total number of 

tuples in each group (resp. bucket for ED_Hist) because all groups 

(resp. buckets) are processed in parallel. Hence, when G increases 

while Nt remains constant, the number of tuples in each group 

(resp. bucket) decreases and so does TQ. In S_Agg, when G 

increases, the size of each partial aggregation increases 

accordingly, and so does the time to process it and in 



consequence, so does TQ. Fig. 10f shows that, for ED_Hist, when 

Nt increases, the number of TDSs which can be mobilized for 

processing increases accordingly, leading to a minimal impact on 

execution time. This statement is true also for Rnf_Noise protocols 

with the difference that the greater number of fake tuples 

generates extra work which is not entirely absorbed by the 

increase of parallelism. For S_Agg, the number of iterative steps 

increases with Nt and so does TQ. 

 

 

 

 

 

Fig. 10. Performance evaluations 

Local execution time (Tlocal). Fig. 10g and 10h plot the average 

execution time of every participating TDSs varying G and Nt 

respectively. It shows that all protocols benefit from an increase 

of G except S_Agg. This is due to the fact that, in S_Agg, less 

TDSs can participate in the parallel computation, and therefore 

each TDS has to process a higher load of bigger partial 

aggregations. Other protocols benefit from the fact that the 

computing load is shared evenly between TDSs.  Fig. 10h shows 

that all protocols but Noise_based protocols are insensitive to an 

increase of Nt again thanks to independent parallelism. The bad 

behaviour of Noise_based protocols is explained by the fact that 

the number of fake tuples increases linearly with Nt and this 

increased load cannot be entirely absorbed by parallelism because 

the number of TDSs available for the computation is bounded in 

this setting by 10% of the participating TDSs. 

Elasticity issues. A distributed and parallel system is said to be 

elastic if it can mobilize smoothly a variable part of its computing 

resources to meet run time requirements. Fig. 10i,e,j measures the 

elasticity of all protocols by varying the computing resource and 

assessing its impact on TQ. The computing resource is 

materialized here by the number of TDSs which can be mobilized 

to contribute to a given computation. It is expressed by a 

percentage of the TDSs contributing to the collection phase. Fig. 

10i (resp. Fig. 10j, Fig. 10e) considers scarce (resp. abundant, 

intermediate) computing resource in the sense that only 1% (resp. 

100%, 10%) of the TDSs contributing to the collection phase 

contribute to the rest of the query computation. Comparing these 

figures shows that, when the resource is scarce, the parallel 

computation is not completely deployed, resulting in a longer time 

to answer the query and vice-versa. Since S_Agg does not depend 

on the number of available TDSs (but on G and on the memory 

size of TDS), its performance is not impacted by a fluctuation of 

the resource available. In other words, S_Agg has lowest 

elasticity. 

6.4 Conclusion: Trade-off between criteria 

 

Fig. 11. Comparison among solutions 

Fig. 11 summarizes and complements the experimental results 

described above through a qualitative comparison of our proposed 

protocols over all criteria of interest to perform a choice.  

Each axis can be interpreted as follows. Local resource 

consumption axis refers to Tlocal metrics and compares the 
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protocols in terms of feasibility, i.e., is the resource consumed by 

a single TDS compatible with the actual computing power of the 

targeted TDSs. This question is particularly relevant for low-end 

TDSs (e.g., smart tokens) and of lesser interest for high-end 

TDSs. S_Agg is at the worst extremity of this axis because the 

final aggregation must be done by a single TDS while ED_Hist 

occupies the other extremity thanks to its capacity to evenly share 

the load among all TDSs. Noise_based protocols are in between 

because they also share the load evenly but at the price of 

managing a large number of fake tuples. Note that the relative 

position of S_Agg and ED_Hist is reversed in the Global 

Resource Consumption axis which refers to LoadQ metrics and 

compares the scalability of the protocols in terms of number of 

parallel queries which can be computed. Indeed, the total number 

of TDSs mobilized by S_Agg for one single query computation is 

much smaller than that of ED_Hist. Regarding the 

Responsiveness axis, the relative ordering of S_Agg and ED_Hist 

actually differs depending on G. According to Fig. 10, S_Agg 

outperforms ED_Hist for small G (smaller than 10) and is 

dominated by ED_Hist for larger G.  Finally, Elasticity axis is a 

direct translation of the conclusions drawn in Section 6.3 and 

Confidentiality axis recalls the conclusion of Section 5. 

This figure makes clear that no protocol outperforms the others, 

though Noise_based protocols are always dominated either by 

S_Agg or ED_Hist. Let us consider a first scenario where 

individuals manage their data (e.g., their medical folder) thanks to 

a secure Personal Data Server embedded in a smart token-like 

TDS [3]. In such scenario, individuals are likely to connect their 

TDS seldom, for short periods of time (e.g., when visiting a 

doctor) and would prefer save resource for executing their own 

tasks rather than being slow down by the computation of external 

queries. According to Fig. 11, ED-Hist best matches the above 

requirements. Conversely, let us consider a smart metering 

platform composed of power meter-like TDSs, connected all the 

time and mostly idle. In this case, TDSs’ owners do not care how 

much resources are monopolized to compute queries and the 

primary concern is for the distribution company to maximize the 

capacity to perform global computation. S_Agg is more 

appropriate in this case. In short, ED_Hist and S_Agg are the two 

best solutions and the final choice depends on the weight 

associated to each axis for a given application.  

7. RELATED WORKS 
This work has connections with related studies in different 

domains, namely protection of outsourced (personal) databases, 

statistical databases and PPDP, SMC and finally secure 

aggregation in sensor networks. We review these works below. 

Security in outsourced databases. Outsourced database services 

or DaaS [21] allow users to store sensitive data on a remote, 

untrusted server and retrieve desired parts of it on request. Many 

works have addressed the security of DaaS by encrypting the data 

at rest and pushing part of the processing to the server side. 

Searchable encryption has been studied in the symmetric-key [6] 

and public-key [8] settings but these works focus mainly on 

simple exact-match queries and introduce a high computing cost. 

Agrawal et al. [2] proposed an order preserving encryption (OPE) 

scheme, supporting range and aggregate queries, but OPE relies 

on the strong assumption that all plaintexts in the database are 

known in advance and order-preserving is usually synonym of 

weaker security. Bucketization-based techniques [21, 24] use 

distributional properties of the dataset to partition data and design 

indexing techniques that allow approximate queries over 

encrypted data. These techniques often support limited types of 

queries and lack of a precise analysis of the performance/security 

tradeoff introduced by the indexes. To overcome this limitation, 

the work in [12] quantitatively measures the resulting inference 

exposure. Other works introduce solutions to compute basic 

arithmetic over encrypted data, but homomorphic encryption [30] 

supports only range queries, fully homomorphic encryption [19] is 

unrealistic in term of time, and privacy homomorphism [22] is 

insecure under ciphertext-only attacks [29]. Hence, optimal 

performance/security tradeoff for outsourced databases is still 

regarded as the holy grail. 

Statistical Database and PPDP. Statistical databases (SDB) [15] 

are motivated by the desire to compute statistics without 

compromising sensitive information about individuals. This 

requires trusting the server to perform query restriction or data 

perturbation, to produce the approximate results, and to deliver 

them to untrusted queriers. So, the SDB model is orthogonal to 

our context since (1) it assumes a trusted third party (i.e., the SDB 

server) and (2) it usually produces approximate results to prevent 

queriers from conducting inferential attack [15]. For its part, 

Privacy-Preserving Data Publishing (PPDP) [4] provides a non 

trusted user with some sanitized data produced by an 

anonymization process such as k-anonymity, l-diversity or 

differential privacy to cite a few [4]. Similarly, PPDP is 

orthogonal to our context since it assumes again a trusted third 

party (i.e., the publisher) and produces sanitized data of lower 

quality to match the information exposure dictated by a specific 

privacy model. 

Secure Multi-party Computation. Secure multi-party 

computation (SMC) allows N parties to share a computation in 

which each party learns only what can be inferred from their own 

inputs (which can then be kept private) and the output of the 

computation. This problem is represented as a combinatorial 

circuit which depends on the size of the input. The resulting cost 

of a SMC protocol depends on the number of inter-participant 

interactions, which in turn depends exponentially on the size of 

the input data, on the complexity of the initial function, and on the 

number of participants. Despite their unquestionable theoretical 

interest, generic SMC approaches are impractical where inputs are 

large and the function to be computed complex. Ad-hoc SMC 

protocols have been proposed [25] to solve specific 

problems/functions but they lack of generality and usually make 

strong assumptions on participants’ availability. Hence, SMC is 

badly adapted to our context. 

Secure Data Aggregation. Wireless sensor networks (WSN) [5] 

consist of sensor nodes with limited power, computation, storage, 

sensing and communication capabilities. In WSN, an aggregator 

node can compute the sum, average, minimum or maximum of the 

data from its children sensors, and send the aggregation results to 

a higher-level aggregator. WSN has some connection with our 

context regarding the computation of distributed aggregations. 

However, contrary to the TDS context, WSN nodes are highly 

available, can communicate with each other in order to form a 

network topology to optimize calculations. Other work ([10]) uses 

additively homomorphic encryption for computing aggregation 

function on encrypted data in WSN but fails to consider queries 

with GROUP BY clauses. [26] protects data against frequency-

based attacks but considers only point and range queries. 

As a conclusion, and to the best of our knowledge, our work is the 

first proposal achieving a fully distributed and secure solution to 

compute general SQL queries (without external joins) over a large 

set of participants.  



8. CONCLUSION 
An ever increasing amount of personal data is collected and ends-

up on servers. Decentralized architectures, devised to help 

individuals better protect their privacy, hinder global treatments 

and queries, impeding the development of services of great 

interest. This paper is a first attempt to fill this gap. It capitalizes 

on secure hardware advances promising soon the presence of a 

Trusted Execution Environment at low cost in any client device 

(trackers, smart meters, sensors, cell phones and other personal 

devices). 

Based on this statement, we have proposed new query execution 

protocols to compute general SQL queries (without external joins) 

while maintaining strong privacy guarantees. The objective was 

not to find the most efficient solution for a specific problem but 

rather to perform a first exploration of the design space. We 

proposed three very different protocols and compare them on 

different axis. The encouraging conclusion is that good 

performance/security trade-off can be found in many situations 

and that the proposed protocols can scale up to nation-wide 

contexts. 

We expect that this work will pave the way for the definition of 

future fully decentralized privacy-preserving querying protocols. 

The main research directions we foresee are: (1) support external 

joins (i.e., joins involving data hosted in different TDSs), (2) 

extend the threat model to (a small number of) compromised 

TDSs and (3) perform performance study on large scale TDS 

platforms. The on-going deployment of very large TDS platforms 

(e.g., the Linky power meters installed by EDF in France or the 

growing interest for PCEHR hosted in secure tokens) would 

enable point (3) while providing a strong motivation to investigate 

issues (1) and (2). 
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