
Privacy-Preserving Query Execution using a Decentralized
Architecture and Tamper Resistant Hardware

Quoc-Cuong To Benjamin Nguyen Philippe Pucheral
SMIS Project, INRIA Rocquencourt, 78153 Le Chesnay, France

PRiSM Laboratory, 45, Av. des Etats-Unis, 78035 Versailles, France

<Fname.Lname>@inria.fr , <Fname.Lname>@prism.uvsq.fr

ABSTRACT

Current applications, from complex sensor systems (e.g.

quantified self) to online e-markets acquire vast quantities of

personal information which usually ends-up on central servers.

Decentralized architectures, devised to help individuals keep full

control of their data, hinder global treatments and queries,

impeding the development of services of great interest. This paper

promotes the idea of pushing the security to the edges of

applications, through the use of secure hardware devices

controlling the data at the place of their acquisition. To solve this

problem, we propose secure distributed querying protocols based

on the use of a tangible physical element of trust, reestablishing

the capacity to perform global computations without revealing any

sensitive information to central servers. There are two main

problems when trying to support SQL in this context: perform

joins and perform aggregations. In this paper, we study the subset

of SQL queries without joins and show how to secure their

execution in the presence of honest-but-curious attackers. Cost

models and experiments demonstrate that this approach can scale

to nationwide infrastructures.

Keywords

Privacy-preserving, decentralized, SQL query, trusted hardware.

1. INTRODUCTION
With the convergence of mobile communications, sensors and

online social networks technologies, we are witnessing an

exponential increase in the creation and consumption of personal

data. Some data is freely disclosed by users. Some other is

transparently acquired by sensor systems through analog

processes (e.g., GPS tracking units, smart meters, healthcare

sensors) or mechanical interactions (e.g., as simple as opening a

door or putting light on). In fine, all this data ends up in servers. It

represents an unprecedented potential for applications and

business (e.g., car insurance billing, carbon tax charging, traffic

decongestion, resource optimization in smart grids, healthcare

surveillance, participatory sensing). However, as seen with the

PRISM affair, the public opinion is starting to wonder whether

these new services are not bringing us closer to the science fiction

dystopias, since individuals data is carefully scrutinized by

governmental agencies and companies in charge of processing it

[28]. It has become clear that centralizing and processing all one’s

data in a single server is a major problem with regards to privacy

concerns. Indeed, privacy violations arise from negligence,

abusive use and attacks and no current server-based approach,

including cryptography based and server-side secure hardware [1],

seems capable of closing the gap.

Many initiatives arise to provide better control to the user over the

management of her personal data, as suggested by the World

Economic Forum [18]. In this article, we focus on a novel

architectural approach to this problem called Trusted Cells [14].

This approach capitalizes on emerging practices and hardware

advances representing a sea change in the acquisition and

protection of personal data. Trusted Cells push the security to the

edges of the network, through personal data servers [3] running on

secure smart phones, set-top boxes, plug computers1 or secure

portable tokens2 forming a global decentralized data platform.

Indeed, thanks to the emergence of low-cost secure hardware and

firmware technologies like ARM TrustZone3, a full Trusted

Execution Environment (TEE) will soon be present in any client

device. In this paper, and up to the experiments section, we

consider that personal data is acquired and/or hosted by secure

devices but make no additional assumption regarding the technical

solution they rely on.

In Trusted Cells, security and privacy come from the conjunction

of large scale distributed and trusted hardware. However, this

must not impede on the possibility of executing queries.

Typically, global queries would be helpful to compute aggregates

over smart meters without disclosing individual's raw data (e.g.,

compute the mean energy consumption per time period and

district). Identifying queries also make sense assuming the

identified subjects consent to participate (e.g., send an alert to

people older than 80 and living in Memphis if the number of

people suffering from flu in Tennessee has reached a given

threshold). Hence, individual's privacy on one side and global

benefits for the community and business perspectives on the other

side are contradictory objectives which need to be reconciled.

Computing SQL-like queries on such distributed infrastructure

leads to two major and different problems: computing joins

between data hosted at different locations and computing

aggregates over this same data. This paper addresses the second

issue: how to compute global queries over decentralized personal

data stores while respecting users' privacy? Indeed, we believe

that the computation of aggregates is central to the many novel

privacy preserving applications such as smart metering, e-

administration, etc.

Our objective is to make as few restrictions on the computation

model as possible. We model the information system as a global

database formed by the union of a myriad of distributed local data

1 freedomboxfoundation.org
2 www.gd-sfs.com/portable-security-token
3 www.arm.com/products/processors/technologies/trustzone.php

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

EDBT’14, March 24–28, 2014, Athens, Greece.

(c) 2014, Copyright is with the authors. Published on

OpenProceedings.org. Distribution of this paper is permitted under the

terms of the Creative Commons license CC-by-nc-nd 4.0

http://fr.wikipedia.org/wiki/Memphis_%28Tennessee%29
http://fr.wikipedia.org/wiki/Tennessee

stores (e.g., nation-wide context) and we consider regular SQL

queries (without external joins involving data from different data

stores) and a traditional access control model. Hence the context

we are targeting is different and more general than, (1) querying

encrypted outsourced data where restrictions are put on the

predicates which can be evaluated [2, 6, 17, 22], (2) performing

privacy-preserving queries usually restricted to statistical queries

matching differential privacy constraints [4, 15] and (3)

performing Secure-Multi-Party (SMC) query computations which

cannot meet both query generality and scalability objectives [25].

The contributions of this paper are: (1) to propose different secure

query execution techniques to evaluate regular SQL “group by”

queries over a set of distributed trusted personal data stores, (2) to

study the range of applicability of these techniques and (3) to

show that our approach is compatible with nation-wide contexts.

The rest of this paper is organized as follows. Section 2 states our

problem. Section 3 introduces a framework to execute simple

queries and Section 4 concentrates on complex queries involving

Group By and Having clauses. Section 5 and 6 analyses the

privacy and performance of these solutions through cost models

and experiments. Finally, Section 7 discusses related works and

section 8 concludes.

2. CONTEXT OF THE STUDY

2.1 Asymmetric Architecture
The architecture we consider is decentralized by nature. It is

formed by a large set of low power personal Trusted Data Servers

(TDS) embedded in secure devices. Despite the diversity of

existing hardware platforms, a secure device can be abstracted by

(1) a Trusted Execution Environment and (2) a (potentially

untrusted but cryptographically protected) mass storage area (see

Fig. 1)4. The important assumption is that the TDS code is

executed by the secure device hosting it and then cannot be

tampered, even by the TDS holder herself.

Fig. 1. Trusted Data Servers

We make no assumption about how the data is actually gathered

by TDSs, this point being application dependent [3, 28]. We

simply consider that local databases conform to a common

schema which can be queried in SQL. For example, power meter

data (resp., GPS traces, healthcare records, etc) can be stored in

one (or several) table(s) whose schema is defined by the national

distribution company (resp., an insurance company consortium,

4 For illustration purpose, the secure device considered in our

experiments is made of a tamper-resistant microcontroller

connected to a Flash memory chip.

the Ministry of Health, etc). Since raw data can be highly

sensitive, it must be protected by an access control policy defined

either by the producer organism, by the legislator or by a

consumer association depending on the context. Hence, each TDS

is responsible for participating in a distributed query protocol

while enforcing the access control rules protecting the local data it

hosts.

Since TDSs have limited storage and computing resources and

they are not necessarily always connected, an external

infrastructure, called hereafter Supporting Server Infrastructure

(SSI), is required to manage the communications between TDSs,

run the distributed query protocol and store the intermediate

results produced by this protocol. Because SSI is implemented on

regular server(s), e.g., in the Cloud, it exhibits the same low level

of trustworthiness.

The computing architecture is said asymmetric in the sense that it

is composed of a very large number of low power, weakly

connected but highly secure TDSs and of a powerful, highly

available but untrusted SSI.

2.2 Threat Model
TDSs are the unique elements of trust in the architecture and are

considered honest. As mentioned earlier, no trust assumption

needs to be made on the TDS holder herself because a TDS is

tamper-resistant and enforces the access control rules associated

to its holder (just like a car driver cannot tamper the GPS tracker

installed in her car by its insurance company or a customer cannot

gain access to any secret data stored in her banking smartcard).

We consider honest-but-curious (also called semi-honest) SSI

(i.e., which tries to infer any information it can but strictly follows

the protocol). Considering malicious SSI (i.e., which may tamper

the protocol with no limit, including denial-of-service) is of little

interest to this study. Indeed, a malicious SSI is likely to be

detected with an irreversible political/financial damage and even

the risk of a class action.

The objective is then to implement a querying protocol so that (1)

the querier can gain access only to the final result of authorized

queries (not to the raw data participating in the computation), as in

a traditional database systems and (2) intermediate results stored

in SSI are obfuscated. Preventing inferential attacks by combining

the result of a sequence of authorized queries as in statistical

databases and PPDP work (See section 7) is orthogonal to this

study.

2.3 Type of queries and scenarios
We assume that the querier can issue the following form of SQL

queries5, borrowing the SIZE clause from the definition of

windows in the StreamSQL standard [9]. This clause is used to

indicate a maximum number of tuples to be collected, and/or a

collection duration.

SELECT <attribute(s) and/or aggregate function(s)>

FROM <Table(s)>

[WHERE <condition(s)>]

[GROUP BY <grouping attribute(s)>]

[HAVING <grouping condition(s)>]

[SIZE <size condition(s)>]

5 As stated in the introduction, we do not consider joins between

data stored in different TDSs in this article. However, internal

joins which can be executed locally by each TDS are supported.

Let us consider the following scenario. The energy distribution

company would like to issue the following query on its customers'

smart meters: "SELECT AVG(Cons) FROM Power P, Consumer

C WHERE C.accomodation='detached house' and C.cid = P.cid

GROUP BY C.district HAVING Count(distinct C.cid) > 100 SIZE

50000". This query computes the mean of energy consumption of

consumers living in a detached home grouped by district, for

whose districts where more than 100 consumers answered the poll

and the poll stops after having globally received at least 50.000

answers. The semantics of the query are the same as those of a

stream relational query [13], i.e. the data is pushed from the TDSs

(i.e., smart meters) to SSI (e.g., a Cloud provider or the

distribution company itself) in the form of windows. Only the

smart meter of customers who opt-in for this service will

participate in the computation. Needless to say that the querier,

that is the distribution company, must be prevented to see the raw

data of its customers for privacy concerns6.

In other scenarios where TDSs are seldom connected (e.g.,

querying mobile PCEHR - Personally Controlled Electronic

Health Records - embedded in TDSs), the time to collect the data

is probably going to be quite large. Therefore the challenge is not

on the overall response time, but rather to show that the query

computation on the collected data is tractable in reasonable time,

given local resources.

3. BASIC QUERYING PROTOCOL

3.1 Core infrastructure
Our querying protocols share common basic mechanisms to make

TDSs aware of the queries to be computed and to organize the

dataflow between TDSs and queriers such that SSI cannot infer

anything from the queries and their results.

Query and result delivery: queries are executed in pull mode. A

querier posts its query to the SSI and TDSs download it at

connection time. To this end, SSI can maintain personal

queryboxes (in reference to mailboxes) where each TDS receives

queries directed to it (e.g., get the monthly energy consumption of

consumer C) and a global querybox for queries directed to the

crowd (e.g., get the mean of energy consumption per month for

people living in district D). Result tuples are gathered by the SSI

in a temporary storage area. A query remains active until the SIZE

clause is evaluated to true by the SSI, which then informs the

querier that the result is ready.

Dataflow obfuscation: all data (queries and tuples) exchanged

between the querier and the TDSs, and between TDSs themselves,

can be spied by SSI and must therefore be encrypted. However, an

honest-but-curious SSI can try to conduct frequency-based attack

[26], i.e., exploiting prior knowledge about the data distribution to

infer the plaintext values of ciphertexts. Depending on the

protocols (see later), two kinds of encryption schemes will be

used to prevent frequency-based attacks. With non-deterministic

(aka probabilistic) encryption, denoted by nDet_Enc, several

encryptions of the same message yield different ciphertexts while

deterministic encryption (Det_Enc for short) always produces the

same ciphertext for a given plaintext and key [8]. Whatever the

encryption scheme, symmetric keys must be shared among TDSs:

we note k1 the symmetric key used by the querier and the TDSs to

6 At the 1HZ granularity provided by the French Linky power

meters, most electrical appliances have a distinctive energy

signature. It is thus possible to infer from the power meter data

inhabitants activities [23].

communicate together and k2 the key shared by TDSs to exchange

temporary results among them Note that these keys may change

over time and the way they are delivered to TDSs is context

dependent7.

Access control enforcement: TDSs are assumed to answer only

authorized queries, meaning that they are aware of the access

control (AC) policy and of the querier credentials. As explained in

section 2, this policy can be defined by the application provider,

the legislator or even by a consumer association depending on the

context. As for the cryptographic material, the policy can be either

installed at burn time or be downloaded dynamically depending

on the context.

3.2 Select-From-Where statements
Let us first consider simple SQL queries of the form:

SELECT <attribute(s)> FROM <Table(s)> [WHERE

<condition(s)>] [SIZE <size condition(s)>]

These queries do not have a GROUP BY or HAVING clause nor

involve aggregate functions in the SELECT clause. Hence, the

selected attributes may (or may not) contain identifying

information about the individuals. Though basic, these queries

answer a number of practical use-cases, e.g., a doctor querying the

embedded healthcare folders of her patients, an energy provider

willing to offer special prices to people matching a specific

consumption profile. To compute such queries, the protocol is

divided in two phases (see Fig. 2):

Collection phase: (step 1) the querier posts on the SSI a query Q

encrypted with k1, its credential C signed by an authority and S

the SIZE clause of the query in cleartext so that SSI can evaluate

it; (step 2) targeted TDSs download Q when they connect; (step 3)

each of these TDSs decrypts Q, checks C, evaluates the AC policy

associated to the querier and computes the result of the WHERE

clause on the local data; then each TDS either sends its result

tuples (step 4), or a dummy tuple8 whether the result is empty or

the querier has not enough privilege to access these local data

(step 4'), non-deterministically encrypted with k2. The collection

phase stops when the SIZE condition has been reached. The result

of the collection phase is actually the result of the query

complemented with dummy tuples. We call it Covering Result

(CR). For this form of queries, the aggregation phase presented in

Fig. 2 is empty.

Filtering phase: (step 9) SSI partitions the Covering Result with

the objective to let several TDSs manage next these partitions in

parallel. The Covering Result being fully encrypted, SSI sees

partitions as uninterpreted chunks of bytes; (step 10) connected

TDSs download these partitions. These TDSs may be different

from the ones involved in the collection phase; (step 11) each of

7 In a homogeneous context (i.e., where all TDSs are delivered by

a single provider), these keys or a seed allowing to generate a

sequence of keys can be installed at burn time. In an open

context, a PKI infrastructure could be used so that queriers and

TDSs all have a public-private key pair which can be used to

exchange symmetric keys. Alternatively, a broadcast encryption

scheme can also be used to securely exchange keys between

TDSs and querier.

8 even if the query is encrypted, sending dummy tuples avoids the

SSI to learn the query selectivity (and from that guess the

query). It is also helpful in the case where SSI and querier are

the same entity.

these TDS decrypts the partition and filters out dummy tuples;

(step 12) each TDS sends back the true tuples encrypted with key

k1 to SSI, which finally concatenates all results and informs the

querier that she can download the result (step 13).

Fig. 2. Querying protocol

Informally speaking, the correctness, security and efficiency

properties of the protocol are as follows:

Correctness. Since SSI is honest-but-curious, it will deliver to the

querier all tuples returned by the TDSs. Dummy tuples are

marked so that they can be recognized and removed after

decryption by each TDS. Therefore the final result contains only

true tuples. If a TDS goes offline in the middle of processing a

partition, SSI resends that partition to another available TDS after

a given timeout so that the result is complete.

Security. Since SSI does not know key k1, it cannot decrypt the

query nor the result tuples. TDSs use nDet_Enc for encrypting the

result tuples so that SSI cannot launch any frequency-based attack

nor can detect dummy tuples. But what if SSI acquires a TDS

with the objective to get the cryptographic material? As stated in

Section 2, TDS code cannot be tampered, even by its holder.

Whatever the information decrypted internally, the only output

that a TDS can deliver is a set of encrypted tuples, which does not

represent any benefit for SSI. And what if SSI colludes with the

querier? For the same reason, SSI will only get the same

information as the querier (i.e., the final result in clear text and no

more).

Efficiency. The efficiency of the protocol is linked to the

frequency of TDSs connection and to the SIZE clause. Both the

collection and filtering phases are run in parallel by all connected

TDSs and no time-consuming task is performed by any of them.

As the experiment section will clarify, each TDS manages

incoming partitions in streaming because the internal time to

decrypt the data and perform the filtering is significantly less than

the time needed to download the data.

While important in practice, executing Select-From-Where

queries in the Trusted Cells context shows no intractable

difficulties and the main objective of this section is to present the

query framework in an easy to understand way. Executing Group

By queries is far more challenging. The next section will present

different alternatives to tackle this problem. Rather than trying to

get an optimal solution, which is fatally context dependent, the

objective is to explore the design space and show that different

querying protocols may be devised to tackle a broad range of

situations.

4. GROUP BY QUERIES

4.1 Generic query evaluation protocol

Let us now consider general SQL queries of the form9:

SELECT <attribute(s) and/or aggregate function(s)> FROM

<Table(s)> [WHERE <condition(s)>] [GROUP BY <grouping

attribute(s)>] [HAVING <grouping condition(s)>] [SIZE <size

condition(s)>]

These queries are more challenging to compute because they

require performing set-oriented computations over intermediate

results sent by TDSs to SSI. The point is that TDSs usually have

limited RAM, limited computing resources and limited

connectivity. It is therefore unrealistic to devise a protocol where

a single TDS downloads the intermediate results of all

participants, decrypts them and computes the aggregation alone.

On the other hand, SSI cannot help much in the processing since

(1) it is not allowed to decrypt any intermediate results and (2) it

cannot gather encrypted data into groups based on the encrypted

value of the grouping attributes, denoted by AG={Gi}, without

gaining some knowledge about the data distribution. This would

indeed violate our security assumption since the knowledge of AG

distribution opens the door to frequency-based attacks by SSI. In

the extreme case where AG contains both quasi-identifiers and

sensitive values, attribute linkage would become obvious. Finally,

the querier cannot help in the processing either since she is only

granted access to the final result, and not to the raw data.

To solve this problem, we suggest a generic aggregation protocol

divided into three phases (see Fig. 2):

Collection phase: similar to the basic protocol.

Aggregation phase: (step 5) SSI partitions the result of the

collection phase; (step 6) connected TDSs (may be different from

the ones involved in the collection phase) download these

partitions; (step 7) each of these TDS decrypts the partition,

eliminates the dummy tuples and computes partial aggregations

(i.e., aggregates data belonging to the same group inside each

partition); (step 8) each TDS sends its partial aggregations

encrypted with k2 back to SSI; depending on the protocol (see

next sections), the aggregation phase is iterative, and continues

until all tuples belonging to the same group have been aggregated

(steps 6', 7', 8'); The last iteration produces a Covering Result

containing a single (encrypted) aggregated tuple for each group.

Filtering phase: this phase is similar to the basic protocol except

that the role of step 11 is to eliminate the groups which do not

satisfy the HAVING clause instead of eliminating dummy tuples.

The rest of this section presents different variations of this generic

protocol, depending on which encryption scheme is used in the

collection and aggregation phases, how SSI constructs the

partitions, and what information is revealed to SSI. Each solution

has its own strengths and weaknesses and therefore is suitable for

a specific situation. Three kinds of solutions are proposed: secure

aggregation, noise-based, and histogram-based. They are

9 For the sake of clarity, we concentrate on the management of

distributive, algebraic and holistic aggregate functions identified

in [27] as the most prominent and useful ones.

subsequently compared in terms of privacy protection (Section 5)

and performance (Section 6).

4.2 Secure Aggregation protocol
This protocol, denoted by S_Agg and detailed in Fig. 4,

instantiates the generic protocol as follows. In the collection

phase, each participating TDS encrypts its result tuples using

nDet_Enc to prevent any frequency-based attack by SSI. The

consequence is that SSI cannot get any knowledge about the

group each tuple belongs to. Thus, during step 5, tuples from the

same group are randomly distributed among the partitions. This

imposes the aggregation phase to be iterative, as illustrated in

Fig. 3. At each iteration, TDSs download partitions containing a

sequence of (AG, Aggregate) value pairs ((City,

Energy_consumption) in the example) and sends back to SSI a

smaller sequence of (AG, Aggregate) value pairs where values of

the same group have been aggregated. SSI gathers these partial

aggregations to form new partitions, and so on and so forth until a

single partition is produced, which contains the final aggregation.

Fig. 3. (iterative partial) aggregation

Fig. 4. Secure Aggregation algorithm

Correctness. The requirement for S_Agg to terminate is that TDSs

have enough resources to perform partial aggregations. Each TDS

needs to maintain in memory a data structure called partial

aggregate which stores the current value of the aggregate function

being computed for each group. Each tuple read from the input

partition contributes to the current value of the aggregate function

for the group this tuple belongs to. Hence the partial aggregate

structure must fit in RAM (or be swapped in stable storage at

much higher cost). If the number of groups is high (e.g., grouping

on a key attribute) and TDSs have a tiny RAM, this may become a

limiting factor.

Security. In all phases, the information revealed to SSI is a

sequence of tuples or value pairs encrypted non-deterministically

(nDet_Enc) so that SSI cannot conduct any frequency-based

attack.

Efficiency. The aggregation process is such that the parallelism

between TDSs decreases at each iteration, up to have a single

TDS producing the final aggregation. Note again that incoming

partitions are managed in streaming because the cost to download

the data significantly dominates the rest.

4.3 Noise-based protocols
In these protocols, called Noise_based and detailed in Fig. 5,

Det_Enc is used during the collection phase on the grouping

attributes AG. This allows SSI to assemble tuples belonging to the

same groups in the same partitions. However, using Det_Enc

reveals the distribution of AG to SSI. To prevent this disclosure,

the fundamental idea is that TDSs add some noise (i.e., fake

tuples) to the data in order to hide the real distribution. The added

fake tuples must have identified characteristics, as dummy tuples,

such that TDSs can filter them out in a later step. The

aggregation phase is roughly similar to S_Agg, except that the

content of partitions is no longer random, thereby accelerating

convergence and allowing parallelism up to the final iteration.

Two solutions are introduced to generate noise: random (white)

noise, and noise controlled by complementary domains.

Fig. 5. Random noise algorithm

Random (white) noise solutions. In this solution, denoted

Rnf_Noise, nf fake tuples are generated randomly then added.

TDSs apply Det-Enc on AG, and nDet_Enc on ĀG (the attributes

not appearing in the GROUP BY clause). However, because the

Algorithm R _Noise (K1, K2, Q, nf)
Input: (TDS’s side): the cryptographic keys (K1,K2),
query Q from Querier

Output: the final aggregation Ωfinal.
1 begin Collection phase
2 Each connected TDS sends (nf+1) tuples of the

 form tup = (E (A),nE (Ā) to SSI

3 end
4 begin Aggregation phase
5 repeat //(on SSI side)
6 SSI groups tup with the same E (A)
7 TDSs connect to SSI to download these groups
 (in data stream)
8 until all groups in SSI have been sent to TDSs

9 foreach TDS ∈ TDSs do //(on TDS side)
10 repeat
11 Receive tup from SSI

12 Decrypt tup : A ← E (A); Ā ← nE (Ā)

13 Filter false tuples (based on the identified
 characteristics)
14 Compute the aggregate values for the group
 A : [A , AGG]
15 until no more tuples received from SSI
16 Encrypt this aggregate value: [E (A),nE (AGG)]
17 Send this encrypted aggregation to SSI
18 end
19 Filtering phase //evaluate HAVING clause
20 return nE (Ωfinal) to Querier by SSI

Algorithm S_Agg (K1, K2, Q, α)
Input: (TDS’s side): the cryptographic keys (K1,K2),
query Q from Querier

 (SSI’s side): reduction factor α (α ≥ 2).
Output: the final aggregation Ωfinal.
1 begin Collection phase
2 Each connected TDS sends a tuple of the form
 tup = nE (tup) to SSI
3 end
4 begin Aggregation phase
5 repeat
6 repeat
7 TDSs connect to SSI and SSI chooses tup (or

encrypted partial aggregation Ω) randomly to parallel

feed these TDSs (in data stream)

8 foreach TDS ∈ TDSs do
9 Receive tup (or Ω) from SSI

10 Decrypt tup (or Ω): tup ← nE (tup)

 Ω ← nE (Ω)

11 Add to its partial aggregation: Ω = Ω ⊕ tup

 Ω = Ω ⊕ Ω
12 until all tup (or Ω) in SSI have been sent to

 TDSs

13 foreach TDS ∈ TDSs do
14 Encrypt its partial aggregation: Ω ← nE (Ω)
15 Send Ω to SSI

16 until nΩe = 1

17 end
18 Filtering phase //evaluate HAVING clause
19 return nE (Ωfinal) by SSI to Querier.

fake tuples are randomly generated, the distribution of mixed

values may not be different enough from that of true values

especially if the disparity in frequency among AG is big. To

overcome this difficulty, a large quantity of fake tuples (nf >>1)

must be injected to make the fake distribution dominate the true

one.

Noise controlled by complementary domains. This solution,

called C_Noise, overcomes the limitation of Rnf_Noise by

generating fake tuples based on the prior knowledge of the AG

domain cardinality. Let us assume that AG domain cardinality is nd

(e.g., for attribute Age, nd ≈ 130), a TDS will generate nd-1 fake

tuples, one for each value different from the true one. The

resulting distribution is totally flat by construction. However, if

the domain cardinality is not readily available, a cardinality

discovering algorithm must be launched beforehand (see 4.4).

Correctness. True tuples are grouped in partitions according to the

value of their AG attributes so that the aggregate function can be

computed correctly. Fake tuples are eliminated during the

aggregation phase by TDSs thanks to their identified

characteristics and do not contribute to the computation.

Security. Although TDSs apply Det-Enc on AG, AG distribution

remains hidden to SSI thanks to either white noise such that the

fake distribution dominates the true one or controlled noise

producing a flat distribution.

Efficiency. TDSs do not need to materialize a large partial

aggregate structure as in S_Agg because each partition contains

tuples belonging to a small set of (ideally one) groups.

Additionally, this property guarantees the convergence of the

aggregation process and increases the parallelism in all phases of

the protocol. However, the price to pay is the production and the

elimination afterwards of a potentially very high number of fake

tuples (the value is algorithm and data dependent).

4.4 Equi-depth histogram-based protocol
Getting a prior knowledge of the domain extension of AG allows

significant optimizations as illustrated by C_Noise. Let us go one

step further and exploit the prior knowledge of the real

distribution of AG attributes. The idea is no longer to generate

noisy data but rather to produce a uniform distribution of true data

sent to SSI by grouping them into equi-depth histograms, in a way

similar to [21]. The protocol, named ED_Hist, works as follows.

Before entering the protocol, the distribution of AG attributes must

be discovered and distributed to all TDSs. This process needs to

be done only once and refreshed from time to time instead of

being run for each query. The discovery process is similar to

computing a Count function Group By AG and can therefore be

performed using one of the protocol introduced above. During the

collection phase, each TDS uses this knowledge to calculate

nearly equi-depth histograms, that is a decomposition of the AG

domain into buckets holding nearly the same number of true

tuples. Each bucket is identified by a hash value giving no

information about the position of the bucket elements in the

domain. Then the TDS allocates its tuple(s) to the corresponding

bucket(s) and sends to SSI couples of the form (h(bucketId),

nDet_Enc(tuple)). During the partitioning step of the aggregation

phase, SSI assembles tuples belonging to the same buckets in the

same partitions. Each partition may contain several groups since a

same bucket holds several distinct values. The first aggregation

step computes partial aggregations of these partitions and returns

to SSI results of the form (Det_Enc(group), nDet_Enc(partial

aggregate)). A second aggregation step is required to combine

these partial aggregations and deliver the final aggregation.

Correctness. Only true tuples are delivered by TDSs and they are

grouped in partitions according to the bucket they belong to.

Buckets are disjoint and partitions contain a small set of grouping

values so that partial aggregations can be easily computed by

TDSs.

Security. SSI only sees a nearly uniform distribution of

h(bucketId) values and cannot infer any information about the true

distribution of AG attributes. Note that h(bucketId) plays here the

same role as Det_Enc(bucketId) values but is cheaper to compute

for TDSs.

Fig. 6. Histogram-based algorithm

Efficiency. TDSs do not need to materialize a large partial

aggregate structure as in S_Agg because each partition contains

tuples belonging to a small set of groups during the first phase and

to a single group during the second phase. As for C_Noise, this

property guarantees convergence of the aggregation process and

maximizes the parallelism in all phases of the protocol. But

contrary to C_Noise, this benefit does not come at the price of

managing fake tuples.

This section shows that the design space for executing complex

queries with Group By is large. It presented three rather different

alternatives for computing these queries and provided a rough

Algorithm ED_Hist (K1, K2, Q)
Input: (TDS’s side): the cryptographic keys (K1, K2),
query Q from Querier.

Output: the final aggregation Ωfinal.
1 Call distribution discovering algorithm to
discover the distribution
2 begin Collection phase
3 Each connected TDS sends a tuple of the form tup

= (h(A),nE (Ā)) to the SSI. // h(A) is the mapping

function applied on the A .
4 end
5 begin First Aggregation phase
6 repeat //(on SSI side)
7 SSI groups tup with the same h(A)
8 TDSs connect to SSI to parallel download
 these groups
9 until all groups in SSI have been sent to TDSs

10 foreach TDS ∈ TDSs do //(on TDS side)
11 repeat
12 Receive tup from SSI

13 Decrypt tup : A ← h (A); Ā ← nE (Ā)

14 Compute the aggregate values for all groups
 contained in h(A): [A , AGG]
15 until no more tuples received from SSI
16 Encrypt these aggregate values: tup =
 [E (A),nE (AGG)]

17 Send these encrypted aggregations to SSI
18 end
19 begin Second Aggregation phase
20 repeat //(on SSI side)
21 SSI groups tup with the same E (A)
22 TDSs connect to SSI to parallel download
 these groups
23 until all groups in SSI have been sent to TDSs

24 foreach TDS ∈ TDSs do //(on TDS side)
25 repeat
26 Receive tup from SSI

27 Decrypt tup : A ← E (A); AGG ← nE (AGG)

28 Compute the aggregate values for only one
 group A : [A , AGG]
29 until no more tuples received from SSI
30 Encrypt these aggregate values: [E (A),
 nE (AGG)]
31 Send these encrypted aggregations to SSI
32 end
33 Filtering phase //evaluate HAVING clause
34 return nE (Ωfinal) to Querier by SSI

discussion about their respective correctness, security and

efficiency. The next sections compare respectively the security

and performance of these alternatives in a deeper way to assess

whether one solution dominates the others in all situations or

which parameters are the most influential in the selection of the

solution best adapted to each context.

5. INFORMATION EXPOSURE ANALYSIS
In this section, in order to quantify the confidentiality of each

algorithm, we measure the information exposure of the encrypted

data they reveal to SSI by using the approach proposed in [12]

which introduces the concept of coefficient to assess the exposure.

To illustrate, let us consider the example in Fig. 7 where Fig. 7a is

taken from [12] and Fig. 7b is the extension of [12] applied in our

context. The plaintext table Accounts is encrypted in different

ways corresponding to our proposed protocols. To measure the

exposure, we consider the probability that an attacker can

reconstruct the plaintext table (or part of the table) by using the

encrypted table and his prior knowledge about global distributions

of plaintext attributes.

Fig. 7. Encryptions and IC tables

Although the attacker does not know which encrypted column

corresponds to which plaintext attribute, he can determine the

actual correspondence by comparing their cardinalities. Namely,

she can determine that IA, IC, and IB correspond to attributes

Account, Customer, and Balance respectively. Then, the IC table

(the table of the inverse of the cardinalities of the equivalence

classes) is formed by calculating the probability that an encrypted

value can be correctly matched to a plaintext value. For example,

with Det_Enc, P(α = Alice) = 1 and P(κ = 200) = 1 since the

attacker knows that the plaintexts Alice and 200 have the most

frequent occurrences in the Accounts table (or in the global

distribution) and observes that the ciphertexts α and κ have

highest frequencies in the encrypted table respectively. The

attacker can infer with certainty that not only α and κ represent

values Alice and 200 (encryption inference) but also that the

plaintext table contains a tuple associating values Alice and 200

(association inference). The probability of disclosing a specific

association (e.g., <Alice,200>) is the product of the inverses of

the cardinalities (e.g., P(<α,κ> = <Alice,200>) = P(α = Alice)×

P(κ = 200) = 1). The exposure coefficient Ԑ of the whole table is

estimated as the average exposure of each tuple in it:

Here, n is the number of tuples, k is the number of attributes, and

ICi,j is the value in row i and column j in the IC table. Let’s Nj be

the number of distinct plaintext values in the global distribution of

attribute in column j (i.e., Nj ≤ n).

Using nDet_Enc, because the distribution of ciphertexts is

obfuscated uniformly, the probability of guessing the true

plaintext of α is P(α = Alice) = 1/5. So, ICi,j = 1/Nj for all i, j, and

thus the exposure coefficient of S_Agg is:

For the nearly equi-depth histogram, each hash value can

correspond to multiple plaintext values. Therefore, each hash

value in the equivalence class of multiplicity m can represent any

m values extracted from the plaintext set, that is, there are

different possibilities. The identification of the correspondence

between hash and plaintext values requires finding all possible

partitions of the plaintext values such that the sum of their

occurrences is the cardinality of the hash value, equating to

solving the NP-Hard multiple subset sum problem [11]. We

consider two critical values of collision factor h (defined as the

ratio G/M between the number of groups G and the number M of

distinct hash values) that correspond to two extreme cases (i.e.,

the least and most exposure) of ɛED_Hist: (1) h = G: all plaintext

values collide on the same hash value and (2) h = 1: distinct

plaintext values are mapped to distinct hash values (i.e., in this

case, the nearly equi-depth histogram becomes Det_Enc since the

same plaintext values will be mapped to the same hash value).

In the first case, the optimal coefficient exposure of histogram is:

because ICi,j = 1/Nj for all i, j. For the second case, the experiment

in [11] (where they generated a number of random databases

whose number of occurrences of each plaintext value followed a

Zipf distribution) varies the value of h to see its impact to ɛED_Hist.

This experiment shows that the smaller the value of h, the bigger

the ɛED_Hist and ɛED_Hist reaches maximum value (i.e., max(ɛED_Hist)

≈ 0.4) when h = 1.

For Noise_based algorithms, when nf = 0 (i.e., no fake tuples),

Rnf_Noise becomes Det_Enc and therefore it has maximum

exposure in this case. If nf is not big enough, since each TDS

generates very few fake tuples, the transformed distribution

cannot hide some ciphertexts with remarkable (highest or lowest)

frequencies, increasing the exposure. The bigger the nf, the lower

the probability that these ciphertexts are revealed. Exceptionally,

when the noise is not random (but controlled by domain

cardinality of AG), C_Noise has better exposure since all

ciphertexts have the same frequency (ICi,j = 1/Nj for all i, j):

𝜀𝐶_𝑁𝑜𝑖𝑠𝑒 =
1

 𝑛𝑓+1 ∗𝑛
 𝐼𝐶𝑖,𝑗

𝑘
𝑗=1

 𝑛𝑓+1 ∗𝑛

𝑖=1

=
1

𝑛𝑑∗𝑛

1

𝑁𝑗

𝑘
𝑗=1

𝑛𝑑∗𝑛
𝑖=1 = 1/ 𝑁𝑗

𝑘
𝑗=1

The exposure coefficient gets the highest value when no

encryption is used at all and therefore all plaintexts are displayed

to attacker. In this case, ICi,j = 1 ∀ i, j, and thus the exposure

coefficient of plaintext table is (trivially):

,

1 1

1 kn

i j

i j

IC
n

_

1 1 1

1 1
1/

k kn

S Agg j

i j jj

N
n N

jN

m

_

1

min() 1/
k

ED Hist j

j

N

The information exposures among our proposed solutions are

summarized in Fig. 8. In conclusion, S_Agg is the most secure

protocol. To reach the highest secure level as the S_Agg, other

protocols must pay some high prices. Specifically, Rnf_Noise has

to generate a very large amount of noise regardless of the value of

G; C_Noise also incurs large noise if G is big; and ED_Hist must

have a significant collision factor.

Fig. 8. Information exposure among protocols

6. EXPERIMENTAL EVALUATION
This section evaluates the respective performance of our

solutions. We use an analytical cost model for this evaluation and

calibrate this model with basic performance measurements

performed on a real hardware platform (see 6.2). This choice lies

in the difficulty of setting up a very large scale platform of TDSs

today while our main objective is to assess whether our protocols

can scale up to nation-wide contexts.

6.1 Cost Model
The metrics of interest in this evaluation are the following:

 PTDS: number of TDSs that participate in the computation of a

given phase (depending on the protocol, not all connected TDSs

may be involved in a computation). This metric reflects the

parallelism level of a protocol.

 LoadQ: global resource consumption for evaluating a query Q,

expressed as the total size of data that TDSs and SSI have to

process. This metric reflects the scalability of the solution in

terms of capacity of the system to manage a large set of queries

in parallel and/or a large set of TDSs to be queried.

 TQ: query response time, reflecting the responsiveness of the

protocol. Since the time in the collection phase is application-

dependent and is similar for all protocols, and since the time in

the filtering phase is also similar for all protocols, TQ focuses

on the time spent on the aggregation phase, which is actually

the most complex phase.

 Tlocal: average time that each participating TDS spends to

compute the query. This metric reflects the feasibility of the

solution because the longer this time, (1) the lower the

probability that TDS stays connected during this time and (2)

the higher the burden for an individual to accept participating in

distributed queries.

The weight associated to each of these metrics is context-

dependent, as discussed in Section 6.4. These metrics are

computed based on the following main parameters: Nt total

number of encrypted tuples sent to SSI by TDSs (without loss of

generality, we consider in the model that each TDS produces a

single tuple in the collection phase, hence Nt reflects also the

number of TDSs participating in the query); G number of groups;

st size of an encrypted tuple; Tt time spent by each TDS to process

one tuple (including transfer, cryptographic and aggregation

time); 𝑁𝑖
𝑇𝐷𝑆 number of TDSs that participate in the ith partial

aggregation phase (protocol dependent); α, nNB, nED, reduction

factors in the aggregation phase in S_Agg, Noise_based and

ED_Hist respectively; nf number of fake tuples per true tuple in

Noise_based protocols; h the average number of groups

corresponding to each hash value in ED_Hist.

6.1.1 Secure Aggregation protocol
Because the aggregation phase is iterative, the time spent in this

phase is the total time for all iterative steps. In the first step of this

phase, the time required to download data from SSI and return

temporary result is: 𝑡1 = 𝑁𝑡

𝑁1
𝑇𝐷𝑆 ∗ 𝑇𝑡 ; 𝑡1

′ = 𝐺 ∗ 𝑇𝑡 .

Similarly, in step i of the aggregation phase, we have:

𝑡𝑖 =
𝑁𝑖−1

𝑇𝐷𝑆

𝑁𝑖
𝑇𝐷𝑆 ∗ 𝐺 ∗ 𝑇𝑡 ; 𝑡𝑖

′ = 𝐺 ∗ 𝑇𝑡 (i = 2 – n), with n is the total

number of iterative steps in this phase.

For simplicity, we assume that the reduction factor α in every step

is similar:

𝛼 =
𝑁𝑡/𝐺

𝑁1
𝑇𝐷𝑆 =

𝑁1
𝑇𝐷𝑆

𝑁2
𝑇𝐷𝑆 = ⋯ =

𝑁𝑛−1
𝑇𝐷𝑆

𝑁𝑛
𝑇𝐷𝑆 .

Since 𝑁𝑛
𝑇𝐷𝑆 = 1, the number of iterative steps is 𝑛 = log𝛼

𝑁𝑡

𝐺

The computation time of S_Agg is:

 𝑇𝑄
𝑆_𝐴𝑔𝑔

= 𝑡𝑖 + 𝑡𝑖
′ = 𝛼 + 1 log𝛼

𝑁𝑡

𝐺
 ∗ 𝐺 ∗ 𝑇𝑡

𝑛
𝑖=1

To find the optimal time for aggregation phase, let f(α) = (α +

1)logα(Nt/G).

We have:
𝑑𝑓

𝑑𝛼
=

𝛼∗𝑙𝑛𝛼 −(𝛼+1)

𝛼∗(𝑙𝑛𝛼)2
∗ 𝑙𝑛

𝑁𝑡

𝐺

Solving the equation
𝑑𝑓

𝑑𝛼
= 0 gives α ≈ 3.6.

We call αop = 3.6 the optimal reduction factor (i.e., 𝑇𝑄
𝑆_𝐴𝑔𝑔

 gets

the minimum value when αop = 3.6).

These other metrics are calculated as follows:

𝑃𝑇𝐷𝑆
𝑆_𝐴𝑔𝑔

= 𝑁𝑖
𝑇𝐷𝑆𝑛

𝑖=1 =
𝑁𝑡

𝐺
∗ 𝛼−𝑖𝑛

𝑖=1

𝐿𝑜𝑎𝑑𝑄
𝑆_𝐴𝑔𝑔

= 𝑁𝑡 + 𝛼𝐺 𝑁𝑖
𝑇𝐷𝑆𝑛

𝑖=2 + 𝐺 𝑁𝑖
𝑇𝐷𝑆𝑛

𝑖=1 ∗ 𝑠𝑡

 = 1 + 2 𝛼−𝑖𝑛
𝑖=1 ∗ 𝑁𝑡 ∗ 𝑠𝑡

𝑇𝑙𝑜𝑐𝑎𝑙
𝑆_𝐴𝑔𝑔

=
 𝑁𝑡+𝛼𝐺 𝑁𝑖

𝑇𝐷𝑆𝑛
𝑖=2 ∗𝑇𝑡

𝑃𝑇𝐷𝑆
𝑆_𝐴𝑔𝑔

6.1.2 Noise_based protocols
Because all tuples belonging to one group may spread over

multiple partitions, the aggregation phase includes two steps.

In the first step, each group contains (nf + 1) * Nt / G tuples in

average, and we assume that there are nNB TDSs handling tuples

belonging to one group. The time required to download data from

SSI and return temporary result in this step is:

𝑡1 =
 𝑛𝑓+1 ∗𝑁𝑡

𝑛𝑁𝐵 ∗𝐺
∗ 𝑇𝑡 ; 𝑡1

′ = 𝑇𝑡 ;

In the second step, each TDS receives nNB tuples belonging to one

group to compute the final aggregation, so the time required is:

𝑡2 = 𝑛𝑁𝐵 ∗ 𝑇𝑡 ; 𝑡2
′ = 𝑇𝑡 ;

The computation time of Rnf_Noise is:

𝑇𝑄

𝑅𝑛𝑓 _𝑁𝑜𝑖𝑠𝑒
= 𝑛𝑁𝐵 +

 𝑛𝑓+1 ∗𝑁𝑡

𝑛𝑁𝐵 ∗𝐺
+ 2 ∗ 𝑇𝑡

_

1 1

1
1 1

kn

P Text

i jn

Apply the Cauchy’s inequality, we have:

 𝑛𝑁𝐵 +
 𝑛𝑓+1 ∗𝑁𝑡

𝑛𝑁𝐵 ∗𝐺
≥ 2 ∗

 𝑛𝑓+1 ∗𝑁𝑡

𝐺

The computation time of Rnf_Noise gets optimal value when the

optimal reduction factor is: 𝑛𝑁𝐵 =
 𝑛𝑓+1 ∗𝑁𝑡

𝐺
 .

𝑃𝑇𝐷𝑆

𝑅𝑛𝑓_𝑁𝑜𝑖𝑠𝑒
= 𝑛𝑁𝐵 + 1 ∗ 𝐺

𝐿𝑜𝑎𝑑𝑄

𝑅𝑛𝑓 _𝑁𝑜𝑖𝑠𝑒
= 𝑛𝑓 + 1 ∗ 𝑁𝑡 + 2𝑛𝑁𝐵 ∗ 𝐺 + 𝐺 ∗ 𝑠𝑡

𝑇𝑙𝑜𝑐𝑎𝑙

𝑅𝑛𝑓 _𝑁𝑜𝑖𝑠𝑒
=

 𝑛𝑓+1 ∗𝑁𝑡

𝐺
∗ 𝑇𝑡

6.1.3 Histogram-based protocol
Let’s h be the average number of groups corresponding to each

hash value. By applying the Cauchy’s inequality and the same

mechanism as in Rnf_Noise, the optimal computation time is:

𝑇𝑄(𝑜𝑝)
𝐸𝐷_𝐻𝑖𝑠𝑡 = 3 ∗

∗𝑁𝑡

𝐺

3
+ + 2 ∗ 𝑇𝑡 when the reduction factors

in each step are: 𝑛𝐸𝐷 =
∗𝑁𝑡

𝐺

23

 ; 𝑚𝐸𝐷 =
∗𝑁𝑡

𝐺

3

Then, the other metrics are based on these factors as follows:

𝑃𝑇𝐷𝑆
𝐸𝐷_𝐻𝑖𝑠𝑡 =

𝑛𝐸𝐷

+ 𝑚𝐸𝐷 + 1 ∗ 𝐺

𝐿𝑜𝑎𝑑𝑄
𝐸𝐷_𝐻𝑖𝑠𝑡 = 𝑁𝑡 + 2𝑛𝐸𝐷 ∗ 𝐺 + 2𝑚𝐸𝐷 ∗ 𝐺 + 𝐺 ∗ 𝑠𝑡

𝑇𝑙𝑜𝑐𝑎𝑙
𝐸𝐷_𝐻𝑖𝑠𝑡 =

 𝑁𝑡+𝑛𝐸𝐷 ∗𝐺+𝑚𝐸𝐷 ∗𝐺 ∗𝑇𝑡

 𝑛𝐸𝐷 /+𝑚𝐸𝐷 +1 ∗𝐺

Note that this is just a subset of the complete cost model which

can be found in the technical report [20].

6.2 Unit test
To calibrate our model, we performed unit tests on the

development board presented in Fig. 9a. This board exhibits

hardware characteristics representative of secure tokens-like

TDSs, including those provided by Gemalto (the smartcard world

leader), our industrial partner. This board has the following

characteristics: the microcontroller is equipped with a 32 bit RISC

CPU clocked at 120 MHz, a crypto-coprocessor implementing

AES and SHA in hardware (encrypting or decrypting a block of

128bits costs 167 cycles), 64 KB of static RAM, 1 MB of NOR-

Flash and is connected to a 1 GB external NAND-Flash and to a

smartcard chip hosting the cryptographic material. The device can

communicate with the external world through USB full speed.

The speed in theory is 12 Mbps but the real speed measured with

the device is around 7.9 Mbps.

We measured on this device the performance of the main

operations influencing the global cost, that is: encryption,

decryption, hashing, communication and CPU time, and put these

numbers as constants in the formulas. Fig. 9b depicts the internal

time consumption of this platform to manage partitions of 4KB.

The transfer cost dominates the other costs due to the network

latencies. The CPU cost is higher than cryptographic cost because

(1) the cryptographic operations are done in hardware by the

crypto-coprocessor and (2) TDS spends CPU time to convert the

array of raw bytes (resulting from the decryption) to the number

format for calculation later. Encryption time is much smaller than

decryption time because only the result of the aggregation of each

partition needs to be encrypted.

Other TDSs (e.g., smart meters) may be more powerful than smart

tokens, although client-based hardware security is always

synonym of low power. Anyway, as this section will make clear,

the internal time consumption turns out not to be the limiting

factor. Hence our choice of considering low-power TDSs in this

experiment is expected to broaden our conclusions.

a) b)

Fig. 9. Hardware device & its internal time consumption

6.3 Performance comparisons
In this study, we concentrate on the performance of Group By

queries since they are the most challenging to compute. We vary

the dataset size (Nt varies from 5 to 65 million), the number of

groups (G varies from 1 to 106) as well as the number of TDSs

participating in the computation as a percentage of all TDSs

connected at a given time (varying from 1% to 100%). We fix two

parameters and vary the others. When the parameters are fixed,

Nt=106, G=103, st=16b, Tt=16μs, h=5 and the percentage of TDS

connected is 10% of Nt. We also compute and use the optimal

value for all reduction factors as well as for𝑁𝑖
𝑇𝐷𝑆 . In the figures,

we plot two curves for Rnf_Noise protocols, R2_Noise (nf = 2) and

R1000_Noise (nf = 1000) to capture the impact of the ratio of fake

tuples. We summarize below the main conclusions of the

performance evaluation. A more detailed study is provided in a

technical report [20].

Level of parallelism (PTDS). Fig. 10a depicts PTDS varying G. For

S_Agg, when G increases, the iterative merging of partial

aggregations has lower convergence and therefore less

participating TDSs can be mobilized in parallel to build the

aggregations. On the contrary, other protocols can process groups

in parallel and independently, so that the level of parallelism

increases linearly with G. Fig. 10b depicts PTDS varying Nt.

Noise_based protocols seem to benefit most from an increase of

Nt in terms of parallelism but the benefit is actually fictitious; it is

due to the fact that a higher number of fake tuples are produced

and need to be processed (though in parallel).

Resource consumption (LoadQ). Fig. 10c and 10d show LoadQ

respectively in terms of G and Nt. Not surprisingly, the total load

of Noise_based protocols is highest because of the extra

processing incurred by fake tuples. However, nf depends only on

Nt, so when G increases, the total load of Noise_based protocols

remain constant. Other protocols generate much lower and

roughly comparable loads.

Query response time (TQ). Fig. 10e shows the impact of G over

TQ. In all protocols but S_Agg, TQ depends on the total number of

tuples in each group (resp. bucket for ED_Hist) because all groups

(resp. buckets) are processed in parallel. Hence, when G increases

while Nt remains constant, the number of tuples in each group

(resp. bucket) decreases and so does TQ. In S_Agg, when G

increases, the size of each partial aggregation increases

accordingly, and so does the time to process it and in

consequence, so does TQ. Fig. 10f shows that, for ED_Hist, when

Nt increases, the number of TDSs which can be mobilized for

processing increases accordingly, leading to a minimal impact on

execution time. This statement is true also for Rnf_Noise protocols

with the difference that the greater number of fake tuples

generates extra work which is not entirely absorbed by the

increase of parallelism. For S_Agg, the number of iterative steps

increases with Nt and so does TQ.

Fig. 10. Performance evaluations

Local execution time (Tlocal). Fig. 10g and 10h plot the average

execution time of every participating TDSs varying G and Nt

respectively. It shows that all protocols benefit from an increase

of G except S_Agg. This is due to the fact that, in S_Agg, less

TDSs can participate in the parallel computation, and therefore

each TDS has to process a higher load of bigger partial

aggregations. Other protocols benefit from the fact that the

computing load is shared evenly between TDSs. Fig. 10h shows

that all protocols but Noise_based protocols are insensitive to an

increase of Nt again thanks to independent parallelism. The bad

behaviour of Noise_based protocols is explained by the fact that

the number of fake tuples increases linearly with Nt and this

increased load cannot be entirely absorbed by parallelism because

the number of TDSs available for the computation is bounded in

this setting by 10% of the participating TDSs.

Elasticity issues. A distributed and parallel system is said to be

elastic if it can mobilize smoothly a variable part of its computing

resources to meet run time requirements. Fig. 10i,e,j measures the

elasticity of all protocols by varying the computing resource and

assessing its impact on TQ. The computing resource is

materialized here by the number of TDSs which can be mobilized

to contribute to a given computation. It is expressed by a

percentage of the TDSs contributing to the collection phase. Fig.

10i (resp. Fig. 10j, Fig. 10e) considers scarce (resp. abundant,

intermediate) computing resource in the sense that only 1% (resp.

100%, 10%) of the TDSs contributing to the collection phase

contribute to the rest of the query computation. Comparing these

figures shows that, when the resource is scarce, the parallel

computation is not completely deployed, resulting in a longer time

to answer the query and vice-versa. Since S_Agg does not depend

on the number of available TDSs (but on G and on the memory

size of TDS), its performance is not impacted by a fluctuation of

the resource available. In other words, S_Agg has lowest

elasticity.

6.4 Conclusion: Trade-off between criteria

Fig. 11. Comparison among solutions

Fig. 11 summarizes and complements the experimental results

described above through a qualitative comparison of our proposed

protocols over all criteria of interest to perform a choice.

Each axis can be interpreted as follows. Local resource

consumption axis refers to Tlocal metrics and compares the

Feasibility, Local Resource Consumption
worst best

S_Agg, R1000_Noise C_Noise R2_Noise ED_Hist

Responsiveness (large G)
worst best

S_Agg R1000_Noise C_Noise R2_Noise ED_Hist

Responsiveness (small G)
worst best

R1000_Noise C_Noise R2_Noise ED_Hist S_Agg

Global Resource Consumption
worst best

R1000_Noise C_Noise ED_Hist R2_Noise S_Agg

Confidentiality
worst best

Cleartext Noise_based, ED_Hist S_Agg

Elasticity
worst best

S_Agg R2_Noise ED_Hist C_Noise R1000_Noise

j)

1E-05

0.0001

0.001

0.01

0.1

1

10

1E+01E+11E+21E+31E+41E+51E+6

TQ
 (

se
co

n
d

)

G

available TDS = 100% Nt

i)

1E-05

0.0001

0.001

0.01

0.1

1

10

1E+01E+11E+21E+31E+41E+51E+6

TQ
 (

se
co

n
d

)

G

available TDS = 1% Nt

h)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

5 15 25 35 45 55 65

Tl
o

ca
l (

se
co

n
d

)

Nt (millions)

g)

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1E+01E+11E+21E+31E+41E+51E+6

Tl
o

ca
l (

se
co

n
d

)

G

f)

0

0.2

0.4

0.6

0.8

5 15 25 35 45 55 65

TQ
 (

se
co

n
d

)

Nt (millions)
e)

0.0001

0.001

0.01

0.1

1

10

1E+0 1E+11E+2 1E+31E+4 1E+51E+6

TQ
 (

se
co

n
d

)

G

d)

10

100

1000

10000

100000

1000000

5 15 25 35 45 55 65Lo
a

d
Q

 (
M

b
yt

es
)

Nt (millions)

c)

10

100

1000

10000

100000

1E+01E+11E+21E+31E+41E+51E+6

Lo
a

d
Q

 (
M

b
yt

e
s)

G

b)

0

1

2

3

4

5

6

7

8

9

5 15 25 35 45 55 65

P
td

s
 (

m
ill

io
n

s)

Nt (million)

a)

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

P
td

s

G

S_Agg R2_Noise
R1000_Noise C_Noise
ED_Hist

protocols in terms of feasibility, i.e., is the resource consumed by

a single TDS compatible with the actual computing power of the

targeted TDSs. This question is particularly relevant for low-end

TDSs (e.g., smart tokens) and of lesser interest for high-end

TDSs. S_Agg is at the worst extremity of this axis because the

final aggregation must be done by a single TDS while ED_Hist

occupies the other extremity thanks to its capacity to evenly share

the load among all TDSs. Noise_based protocols are in between

because they also share the load evenly but at the price of

managing a large number of fake tuples. Note that the relative

position of S_Agg and ED_Hist is reversed in the Global

Resource Consumption axis which refers to LoadQ metrics and

compares the scalability of the protocols in terms of number of

parallel queries which can be computed. Indeed, the total number

of TDSs mobilized by S_Agg for one single query computation is

much smaller than that of ED_Hist. Regarding the

Responsiveness axis, the relative ordering of S_Agg and ED_Hist

actually differs depending on G. According to Fig. 10, S_Agg

outperforms ED_Hist for small G (smaller than 10) and is

dominated by ED_Hist for larger G. Finally, Elasticity axis is a

direct translation of the conclusions drawn in Section 6.3 and

Confidentiality axis recalls the conclusion of Section 5.

This figure makes clear that no protocol outperforms the others,

though Noise_based protocols are always dominated either by

S_Agg or ED_Hist. Let us consider a first scenario where

individuals manage their data (e.g., their medical folder) thanks to

a secure Personal Data Server embedded in a smart token-like

TDS [3]. In such scenario, individuals are likely to connect their

TDS seldom, for short periods of time (e.g., when visiting a

doctor) and would prefer save resource for executing their own

tasks rather than being slow down by the computation of external

queries. According to Fig. 11, ED-Hist best matches the above

requirements. Conversely, let us consider a smart metering

platform composed of power meter-like TDSs, connected all the

time and mostly idle. In this case, TDSs’ owners do not care how

much resources are monopolized to compute queries and the

primary concern is for the distribution company to maximize the

capacity to perform global computation. S_Agg is more

appropriate in this case. In short, ED_Hist and S_Agg are the two

best solutions and the final choice depends on the weight

associated to each axis for a given application.

7. RELATED WORKS
This work has connections with related studies in different

domains, namely protection of outsourced (personal) databases,

statistical databases and PPDP, SMC and finally secure

aggregation in sensor networks. We review these works below.

Security in outsourced databases. Outsourced database services

or DaaS [21] allow users to store sensitive data on a remote,

untrusted server and retrieve desired parts of it on request. Many

works have addressed the security of DaaS by encrypting the data

at rest and pushing part of the processing to the server side.

Searchable encryption has been studied in the symmetric-key [6]

and public-key [8] settings but these works focus mainly on

simple exact-match queries and introduce a high computing cost.

Agrawal et al. [2] proposed an order preserving encryption (OPE)

scheme, supporting range and aggregate queries, but OPE relies

on the strong assumption that all plaintexts in the database are

known in advance and order-preserving is usually synonym of

weaker security. Bucketization-based techniques [21, 24] use

distributional properties of the dataset to partition data and design

indexing techniques that allow approximate queries over

encrypted data. These techniques often support limited types of

queries and lack of a precise analysis of the performance/security

tradeoff introduced by the indexes. To overcome this limitation,

the work in [12] quantitatively measures the resulting inference

exposure. Other works introduce solutions to compute basic

arithmetic over encrypted data, but homomorphic encryption [30]

supports only range queries, fully homomorphic encryption [19] is

unrealistic in term of time, and privacy homomorphism [22] is

insecure under ciphertext-only attacks [29]. Hence, optimal

performance/security tradeoff for outsourced databases is still

regarded as the holy grail.

Statistical Database and PPDP. Statistical databases (SDB) [15]

are motivated by the desire to compute statistics without

compromising sensitive information about individuals. This

requires trusting the server to perform query restriction or data

perturbation, to produce the approximate results, and to deliver

them to untrusted queriers. So, the SDB model is orthogonal to

our context since (1) it assumes a trusted third party (i.e., the SDB

server) and (2) it usually produces approximate results to prevent

queriers from conducting inferential attack [15]. For its part,

Privacy-Preserving Data Publishing (PPDP) [4] provides a non

trusted user with some sanitized data produced by an

anonymization process such as k-anonymity, l-diversity or

differential privacy to cite a few [4]. Similarly, PPDP is

orthogonal to our context since it assumes again a trusted third

party (i.e., the publisher) and produces sanitized data of lower

quality to match the information exposure dictated by a specific

privacy model.

Secure Multi-party Computation. Secure multi-party

computation (SMC) allows N parties to share a computation in

which each party learns only what can be inferred from their own

inputs (which can then be kept private) and the output of the

computation. This problem is represented as a combinatorial

circuit which depends on the size of the input. The resulting cost

of a SMC protocol depends on the number of inter-participant

interactions, which in turn depends exponentially on the size of

the input data, on the complexity of the initial function, and on the

number of participants. Despite their unquestionable theoretical

interest, generic SMC approaches are impractical where inputs are

large and the function to be computed complex. Ad-hoc SMC

protocols have been proposed [25] to solve specific

problems/functions but they lack of generality and usually make

strong assumptions on participants’ availability. Hence, SMC is

badly adapted to our context.

Secure Data Aggregation. Wireless sensor networks (WSN) [5]

consist of sensor nodes with limited power, computation, storage,

sensing and communication capabilities. In WSN, an aggregator

node can compute the sum, average, minimum or maximum of the

data from its children sensors, and send the aggregation results to

a higher-level aggregator. WSN has some connection with our

context regarding the computation of distributed aggregations.

However, contrary to the TDS context, WSN nodes are highly

available, can communicate with each other in order to form a

network topology to optimize calculations. Other work ([10]) uses

additively homomorphic encryption for computing aggregation

function on encrypted data in WSN but fails to consider queries

with GROUP BY clauses. [26] protects data against frequency-

based attacks but considers only point and range queries.

As a conclusion, and to the best of our knowledge, our work is the

first proposal achieving a fully distributed and secure solution to

compute general SQL queries (without external joins) over a large

set of participants.

8. CONCLUSION
An ever increasing amount of personal data is collected and ends-

up on servers. Decentralized architectures, devised to help

individuals better protect their privacy, hinder global treatments

and queries, impeding the development of services of great

interest. This paper is a first attempt to fill this gap. It capitalizes

on secure hardware advances promising soon the presence of a

Trusted Execution Environment at low cost in any client device

(trackers, smart meters, sensors, cell phones and other personal

devices).

Based on this statement, we have proposed new query execution

protocols to compute general SQL queries (without external joins)

while maintaining strong privacy guarantees. The objective was

not to find the most efficient solution for a specific problem but

rather to perform a first exploration of the design space. We

proposed three very different protocols and compare them on

different axis. The encouraging conclusion is that good

performance/security trade-off can be found in many situations

and that the proposed protocols can scale up to nation-wide

contexts.

We expect that this work will pave the way for the definition of

future fully decentralized privacy-preserving querying protocols.

The main research directions we foresee are: (1) support external

joins (i.e., joins involving data hosted in different TDSs), (2)

extend the threat model to (a small number of) compromised

TDSs and (3) perform performance study on large scale TDS

platforms. The on-going deployment of very large TDS platforms

(e.g., the Linky power meters installed by EDF in France or the

growing interest for PCEHR hosted in secure tokens) would

enable point (3) while providing a strong motivation to investigate

issues (1) and (2).

9. ACKNOWLEDGMENTS
The authors wish to thank Philippe Bonnet from University of

Copenhagen for fruitful discussions on this paper.

10. REFERENCES
[1] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic databases.

VLDB, pp 143-154. Hong Kong, (2002).

[2] Agrawal, R., Kiernan, J., Stikant, R., Xu, Y.: Order-preserving
encryption for numeric data. ACM SIGMOD, pp. 563-574. Paris
(2004)

[3] Allard, T., Anciaux, N., Bouganim, L., Guo, Y., Le Folgoc, L.,
Nguyen, B., Pucheral, P., Ray, Ij., Ray, Ik., Yin, S.: Secure Personal
Data Servers: a Vision Paper. VLDB, pp. 25-35. Singapore (2010)

[4] Fung, B. C. M., Wang, K., Chen, R., Yu, P. S.: Privacy-Preserving
Data Publishing: A survey of Recent Developments. ACM
Computing Surveys, 42(4), 2010.

[5] Alzaid, H., Foo, E., Nieto, J.G.: Secure Data Aggregation in
Wireless Sensor Networks: A Survey. AISC, vol. 81, pp. 93-105,
(2008)

[6] Amanatidis, G., Boldyreva, A., O'Neill, A.: Provably-secure schemes
for basic query support in outsourced databases. DBSec, pp. 14-30,
(2007)

[7] M. Fischlin, B. Pinkas, 1-R. Sadeghi, T. Schneider, I. Visconti :
Secure set intersection with untrusted hardware tokens. In CT-RSA,
(2011).

[8] Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently
searchable encryption. CRYPTO, pp. 535–552, (2007)

[9] StreamSQL Guide, available at :
http://www.streambase.com/developers/docs/latest/streamsql/

[10] Castelluccia, C., Mykletun, E., Tsudik, G.: Efficient Aggregation of
Encrypted Data in Wireless Sensor Networks. IEEE Mobiquitous,
(2005)

[11] Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S.,
Paraboschi, S., Samarati, P.: Modeling and assessing inference
exposure in encrypted databases. ACM TISSEC, vol 8(1), pp. 119-
152, (2005)

[12] Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi,
S., Samarati, P.: Balancing confidentiality and efficiency in
untrusted relational DBMSs. ACM CCS, pp. 93-102, (2003)

[13] Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Lee, S.,
Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and
architecture for data stream management, VLDB Journal, 12(2):120-
139, (2003).

[14] Anciaux, N., Bonnet, P., Bouganim, L., Nguyen, B., Sandu Popa, I.,
Pucheral, P.: Trusted Cells: A Sea Change for Personal Data
Services. CIDR, Asilomar, USA, (2013)

[15] Fayyoumi, E., John Oommen, B.: A survey on statistical disclosure
control and micro-aggregation techniques for secure statistical
databases. Softw. Pract. Exper, vol 40(12):1161-1188, (2010)

[16] White, J., Clarke, S., Dougherty, B., Thompson, C., and Schmidt, D.:
R&D Challenges and Solutions for Mobile Cyber-Physical
Applications and Supporting Internet Services. Journal of Internet
Services and Applications, vol. 1(1):45-56, (2010)

[17] Popa, R. A., Redfield, C. M. S., Zeldovich, N., Balakrishnan, H.:
CryptDB: protecting confidentiality with encrypted query
processing. ACM SOSP, pp85-100. New York, (2011)

[18] The World Economic Forum. Rethinking Personal Data:
Strengthening Trust. May 2012.

[19] Gentry, C.: Fully homomorphic encryption using ideal lattices.
STOC, pp. 169-178. Maryland, (2009)

[20] To, Q.C., Nguyen, B., Pucheral, P.: Secure Global Protocol in
Personal Data Server. Technical report, Versailles (France), 2013.
http://www.cse.hcmut.edu.vn/~qcuong/INRIA/TechReport.pdf

[21] Hacigumus, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over
encrypted data in database service provider model. ACM SIGMOD,
pp. 216-227. Wisconsin (2002)

[22] Hacigumus, H., Iyer, B. R., Mehrotra, S.: Efficient execution of
aggregation queries over encrypted relational databases. DASFAA,
pp. 125-136. Korea (2004)

[23] Lam, H.: A Novel Method to Construct Taxonomy Electrical
Appliances Based on Load Signatures,. IEEE Transactions on
Consumer Electronics, 2007.

[24] Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure
multidimensional range queries over outsourced data. VLDB
Journal, vol. 21(3):333-358, (2012)

[25] Kissner, L., Song, D. X.: Privacy-Preserving Set Operations. In
CRYPTO, pp. 241–257, (2005).

[26] Liu, H., Wang, H., Chen, Y.: Ensuring Data Storage Security against
Frequency-based Attacks in Wireless Networks. DCOSS, pp. 201-
215. California (2010)

[27] Locher, T.: Foundations of Aggregation and Synchronization in
Distributed Systems. ETH Zurich, isbn 978-3-86628-254-4, (2009)

[28] de Montjoye, Y-A., Wang, S. S., Pentland, A.: On the Trusted Use of
Large-Scale Personal Data. IEEE Data Eng. Bull. 35(4): 5-8 (2012)

[29] Mykletun, E., Tsudik, G.: Aggregation queries in the database-as-a-
service model. DBSec, pp. 89-103. France (2006)

[30] Paillier, P.: Public-key cryptosystems based on composite degree
residuosity classes. EUROCRYPT, pp. 223-238, (1999)

http://www.informatik.uni-trier.de/~ley/pers/hd/w/Wang:Samuel_S=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Pentland:Alex.html
http://www.informatik.uni-trier.de/~ley/db/journals/debu/debu35.html#MontjoyeWP12

