
TELESAFE: Monitoring Energy Consumption for
Work–Life Boundaries in Telework

Haoying Zhang
Inria, INSA CVL

haoying.zhang@inria.fr

Nicolas Anciaux
Inria, INSA CVL, U. Paris Saclay

nicolas.anciaux@inria.fr

Benjamin Nguyen
INSA CVL, Inria

benjamin.nguyen@insa-cvl.fr

Jose Maria de Fuentes
U. Carlos III de Madrid

jfuentes@inf.uc3m.es

Abstract—Since COVID-19, teleworking has become
widespread, raising concerns about employees’ work-life balance
and well-being. We demonstrate TELESAFE, a lightweight,
fully local and unsupervised system for detecting work-life
boundary crossings (breaks during work time, overworking
during personal time) based on household electricity consumption
time series. Unlike traditional monitoring tools, TELESAFE
does not rely on machine learning, cloud services, or additional
sensors. Instead, it leverages already available data from smart
meters commonly deployed in homes, ensuring full user privacy.
We showcase two use cases (breaks, overworking) and present
a self-monitoring interface for teleworkers.

Index Terms—Time series, Telework, Energy consumption.

Code Availability: The source code and video are available at https:
//gitlab.inria.fr/haoying.zhang/boundary-crossing-detection-interface.
git and https://iww.inria.fr/telesafedemo/fr/.

I. INTRODUCTION

Since COVID-19 pandemic, teleworking has firmly estab-
lished itself as a new norm in many companies. According to
FlexJobs1, it is a well accepted work modality by employees,
with 65% expressing a preference for full remote work. It
contributes to productivity, as teleworkers are 35% more
productive, and 73% declare working outside their regular
hours. However, this shift has introduced significant health
concerns for employees, as widely identified in working health
research [1]. A major stress factor is boundary crossings,
i.e., when professional and personal activities intrude on each
other [2], [3]. Short breaks during work hours may promote
recovery and focus, but too frequent interruptions or work
spilling into personal time can cause stress [3].

Traditionally, such risks were addressed through in-person
workplace inspections [4]. However, in teleworking contexts,
external interventions are limited. This creates a pressing need
for self-monitoring tools that enable teleworkers to indepen-
dently assess and adjust their work-life balance, in alignment
with privacy rights.

We introduce such a system in this work, with a strong
emphasis on privacy by design. TELESAFE processes
all data entirely locally, without transmitting or storing any
information externally. It is based on a fully unsupervised
algorithm, requiring no training data, annotation, or model
personalization. Unlike many existing approaches that rely
on machine learning or intrusive sensors, TELESAFE uses

1See financesonline.com for data on remote work, last accessed Sept 2025.

only data already available in many households: the aggregated
electricity consumption time series from smart meters. No
additional sensors or instrumentation are needed, making the
system lightweight, ethical, and broadly deployable. Beyond
individual use, the system could be added to smart meter dash-
boards, helping customers track well-being while preserving
data sovereignty.

Constraints and challenges. Designing a personal monitoring
tool that is both useful and privacy-preserving requires avoid-
ing traditional AI approaches that rely on centralized learning,
cloud services, or personal data collection. In compliance with
legal frameworks such as GDPR, our solution ensures that
all processing, including detection, classification, and result
aggregation, is performed locally and fully under the user’s
control. These constraints make it difficult to use standard IoT
or machine learning systems, but they encourage the design
of tools that are simple, respect privacy, and give full control
to the user.
Objective. To foster a healthier teleworking environment,
we propose a self-monitoring system to detect and quantify
boundary crossings behaviors, particularly breaks during work
hours which can indicate beneficial rest periods, and Over-
working during private hours which may signal stress:
(BREAK SCENARIO) Break observance during work periods:

The teleworker carries out personal activities, which nor-
mally occur during private time (e.g., watching TV). When
these appear during scheduled work periods, the system
interprets them as breaks.

(OVERWORKING SCENARIO) Work Intrusion in Private Time:

The teleworker continues work activities beyond working
hours (e.g., computer usage). The presence of these during
private time is interpreted as overworking, potentially linked
to elevated stress levels.

Our approach in a nutshell. To achieve these objec-
tive under the stated constraints, we recently proposed
TELESAFE [5], a mechanism to detect work-private bound-
ary crossings by analyzing aggregated, non-annotated time
series. Our algorithm detects similar activities based on an
elastic time-shift aware distance metric (DTW) and unsuper-
vised clustering. The system classifies activities as private
or work-related based on their temporal distribution, without

https://gitlab.inria.fr/haoying.zhang/boundary-crossing-detection-interface.git
https://gitlab.inria.fr/haoying.zhang/boundary-crossing-detection-interface.git
https://gitlab.inria.fr/haoying.zhang/boundary-crossing-detection-interface.git
https://iww.inria.fr/telesafedemo/fr/
https://financesonline.com/remote-work-and-telecommuting-statistics/
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Fig. 1: Boundary crossings: break (red), overwork (blue).

needing to recognize specific devices or actions.
We demonstrate TELESAFE on real and simulated elec-

tric consumption traces in a teleworking context, highlight-
ing its effectiveness in identifying breaks and overworking
episodes (Figure 1). An interactive GUI allows users to
upload their own energy consumption data, visualize detected
boundaries, and receive a weekly report with tailored advises,
all while keeping their data private and under their control.

II. RELATED WORK

Existing approaches to activity monitoring often rely on
intrusive sensing, large-scale data collection, or cloud-based
processing, which raise significant privacy and deployment
concerns. In contrast, our approach prioritizes user autonomy
and privacy by leveraging non-intrusive, already-available data
and processing it entirely on-device.

One way to monitor boundary crossings is using fine-
grained device data with IoT – enabled device communication.
Instrumenting all devices could track usage and, for com-
puters, even purpose (e.g., via bossware). However, privacy
regulations vary: some regions permit supervision (e.g., the
US’s Interguard), while others, like the EU, impose strict
limits. Some works propose minimal instrumentation of the
teleworker’s space, such as using accelerometers and light
sensors [6]. However, this could be rejected by workers due to
the right to home inviolability, protected by constitutions and
the EU Convention on Human Rights [7], which can only be
bypassed in extreme cases.

To address the issue of intrusion, many studies focus on
non-intrusive activity recognition, such as Non-Intrusive Load
Monitoring (NILM), which analyzes aggregated time series
(e.g., electricity consumption) to infer individual activities [8],
[9]. Some approaches suggest using these tools for burnout
detection [10], but offer no concrete solutions and rely on
supervised learning, which requires large, annotated datasets
from diverse teleworking environments.

III. TELESAFE OVERVIEW

We now present the architecture of TELESAFE, a fully
local, lightweight system for detecting work-life boundary
crossings from household electricity consumption. The ap-
proach is unsupervised and relies only on smart meter data,
in line with the privacy-by-design principle emphasized in
the introduction. The processing is composed mainly by four
steps: 1) Time series preprocessing, 2) boundary crossings
detection, 3) Result display, and 4) Weekly teleworking report.

A. Data preparation and preprocessing

The input to TELESAFE is a time series representing
the household electricity consumption of teleworkers, obtained
from sequential measurements over time [11], where each data
point si reflects the aggregated energy usage at a specific
time. Since no public dataset includes labeled telework-related
activities such as breaks or overworking, we simulate these
scenarios using a combination of real-world datasets. A simu-
lator interface (demonstrated in our video) is used to generate
synthetic profiles based on the following three sources:

• Individual Household Electric Power Consumption
(IHEPC) from UCI [12]: This dataset provides detailed
household power usage over nearly four years, sampled
at one-minute intervals. We use it to simulate background
consumption, serving as the ambient noise profile.

• Orange4Home [13]: This dataset captures teleworking
activity within a smart home environment. We extract
energy traces from office plug usage to model work-
related consumption during typical work hours.

• Tracebase [14]: This dataset contains energy usage pro-
files for a range of household devices (e.g., dishwasher,
dryer). We select devices across multiple categories and
durations to simulate diverse personal activities.

To emulate boundary crossings, we inject Tracebase device
traces into a time series aggregating a random Orange4Home
telework profile and IHEPC daily consumption data.
Assumption. Following our recent work [5], the classification
of subsequences of time series is grounded on the assumption
that personal activities (resp., work activities) occur more
frequently during private hours (resp., work hours), enabling
classification without knowing specific activities or devices.
Data preprocessing. The system accepts as input a time
series of length n uploaded in the form of a data frame by
the user. The data frame should contain at least a column
of time, and a column of energy consumption in Watt hour.
Users determine their own working hours depending on their
employment contract, and the private periods are automatically
defined as the complementary segments of the day. Typically,
work periods are split into two segments before and after a
lunch break as illustrated in Fig. 1, where work periods are
marked as w (orange) and private periods as w (green).

B. Boundary Crossings Detection

The main objective of the detection algorithm is to identify
similar activities that appear across different periods of the
day. To this end, we segment the time series into fixed-length
subsequences of length ℓ, where ℓ represents the minimum
duration for an activity to be considered meaningful in the
analysis (see 3⃝ in Fig. 2a). The final output is the boundary
crossings subsequences occurring during work (in red in
Fig. 1) and private (in blue) periods.
Distance metric and threshold computation. The detection
phase requires measuring similarity between subsequences,
which is based on a distance metric. We use the Dynamic
Time Warping (DTW) distance as the metric [15], well-suited
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(a) Detector interface. (b) Weekly report interface.

Fig. 2: Interface TELESAFE

for capturing out-of-phase patterns. Furthermore, a threshold
of similarity (ϵ) should be calculated dynamically and without
supervision. The method described in [5] is implemented as
ϵ = mean(mp)−std(mp), where mp is a vector (also known
as “Matrix Profile” [16]) storing the minimum distance values
for each subsequence in private periods when compared to all
the subsequences in work periods. We extend this definition to
ϵ = mean(dists)−α∗std(dists) by introducing a sensitivity
coefficient α (see 3⃝ in Fig. 2a). This parameter, which ranges
between 0 and 1, allows the user to adjust slightly the threshold
while being set to 0.5 by default: a smaller α results in a looser
threshold, capturing more similar patterns, while a larger α
tightens the threshold, resulting in fewer detected pattern.

PWM matrix. We define two subsequences as similar if the
distance between them, computed using our distance mea-
sure, falls below the threshold. We then store the indices of
similar subsequences for each subsequence in a data struc-
ture called “Private/Work Matrix” (PWM ). Specifically, if
the distance between subsequences Si and Sj is below the
threshold ϵ, then PWM [i, j] = PWM [j, i] = 1; otherwise,
PWM [i, j] = PWM [j, i] = 0. Computing the PWM for all
the subsequences in a time series of length n has a worst case
complexity of O(n2ℓ2). We provide an optimization below.

Overall TELESAFEDBSCAN algorithm. It follows a struc-
tured process [5]. First, we compute and store the distance
values for each pair of subsequences in the teleworker’s profile.
Then, we determine the threshold ϵ as outlined earlier. Finally,
we construct the PWM using ϵ and the stored distance values.
A DBSCAN-based clustering algorithm is then applied to
the PWM to group similar subsequences. Each cluster is
analyzed by counting the number of indices within the work
period w and the private period w. If the majority of indices
belong to w, the cluster is labeled as WORK; otherwise, it
is labeled as PRIV ATE. In case of ties, the label defaults to
PRIV ATE to prioritize privacy. The subsequences appearing
in w but labeled as WORK indicate a overworking scenario,
while those appearing in w but labeled as PRIV ATE indicate

a break scenario. This algorithm can be parallelized to benefit
from speed-ups when utilizing multicore computing resources.

Optimization. To optimize performance, we proposed a
lightweight alternative, TELESAFE-Lite, and compare it
with TELESAFE−DBSCAN in [5]. The optimization
consists of an improved PWM computation and clustering
process, leading to only a slight loss in accuracy but a
significant gain in performance.We first compute and store
only the distances between subsequences from work and
private periods, enabling threshold determination and partial
PWM precomputation. We retain only the indices i where
there exists a j such that PWM [i, j] = 1, treating these
as candidate subsequences while eliminating those for which
PWM [i, j] = 0 for all j, as they have no direct neighbor in
the other period. This approach not only reduces the number
of distance computations but also mitigates the risk of forming
excessively large clusters in density-based clustering (e.g.,
DBSCAN), which can occur if the density threshold (ϵ) is too
high. Finally, we complete the PWM between subsequences
within the same category (work or private) only for the
remaining candidates. Finally, we form clusters with only the
direct neighbors of a subsequence in order to determine if it is
of type PRIV ATE or WORK. If a candidate subsequence
falls in working period w and the majority of its neighbors fall
in w, it is classified as a boundary-crossed break subsequence;
conversely, if it falls in w and has more neighbors in w, it is
classified as a boundary-crossed overworking subsequence.

Detecting overwork during the day-off. An overlooked but
interesting scenario is the detection of overwork during days
off, such as weekends or bank holidays, where no predefined
work boundaries exist on these days: all time is considered
personal by default. The presence of work activity during these
periods directly indicates overwork. To identify such instances,
unsupervised similarity detection methods can be effectively
applied, for example using a matrix profile [16], [17] based on
teleworker’s typical work behavior without break. Importantly,
this phase requires no supervision, and all necessary data



remains available locally on the user’s device.

C. Result Display

The detection algorithm outputs subsequences identified as
boundary crossings. However, some of these may be false
positives or may only partially overlap with an actual boundary
crossing. This can lead to fragmented or noisy results. To
reduce noise in the result visualisation, we propose voting
mechanisms (see 4⃝ in Fig. 2a). These mechanisms exploit the
fact that each point in the profile is covered by ℓ overlapping
subsequences, each being classified as ’boundary crossed’ or
’not’ by the detection algorithm.
Half-Cross vote. Our default voting method, Half-Cross vote,
displays a point if the majority of the subsequences covering
it are classified as boundary crossings.
Any-Cross vote. The Any-Cross vote maximizes coverage by
displaying all points that are part of a boundary crossing sub-
sequence. This method provides an upper bound for accurate
detection, but also introduces noise.
Tau-Cross vote. The Tau-Cross vote provides greater flexibil-
ity by allowing users to set a threshold parameter τ . A point is
displayed if at least a fraction τ of the subsequences covering
it are classified as boundary crossed. Specifically, τ = 0.5
corresponds to Half-Cross vote, while τ = 1/m corresponds
to Any-Cross vote. It is important to note that this parameter
is different from α (in section III-B), which influences the
detection result. Unlike α, this parameter does not change the
result of boundary crossing subsequence detection – it only
affects how the results are visualized. Its purpose is to help
users review the results based on their own knowledge.

D. Weekly teleworking report

After each detection, the break and overwork hours can be
easily calculated by multiplying the length of the detected
subsequence by the sampling frequency. The working hours
are then determined by subtracting the break duration from
the user-defined total working period. This aggregated data
is stored locally on the teleworker’s device. We propose an
interface that visualizes the report by aggregating these key
metrics (i.e., work, break and overwork hours), as illustrated
in Fig. 2. A summary of this data is displayed below the
figure, along with a personalized advice message designed to
promote a healthier teleworking experience. The advice may
include suggestions such as taking more breaks if insufficient
rest periods were detected during the workday, or reducing
work outside of designated working hours. In future versions,
the TELESAFE report interface could be adapted to en-
ergy suppliers’ dashboards, offering value-added services to
customers without compromising privacy.

IV. DEMONSTRATION SCENARIO

The scenario consists of three interactive parts. In the first
part, the user can generate a synthetic time series profile – with
overworking or break activities – using our simulator (interface
shown in the video). The second part (shown in Fig. 2a)
involves detecting boundary crossings from either simulated

profile or real profile obtained from the smart meter uploaded
by clicking the button 1⃝. The time series is then displayed
in the first graph. Next, the user defines the work periods by
clicking the button 2⃝ and selecting the start and end points
directly on the graph. They can visualize the segmentation by
clicking “Show Private/Work Split”. It is possible for the user
to adjust the subsequence length and threshold parameter α
that we discuss in Section III-B, by entering values in the
text box 3⃝, overriding the default settings if needed. Once
configured, the detection process can be initiated by clicking
the “Detect boundary crossings intervals” button, which runs
our algorithm described in Section III-B. A message displaying
the execution time confirms completion. After detection, the
user can select a visualization strategy (described in Section
III-C) in 4⃝ to observe the detected boundary crossings inter-
vals along with their assessment results in the second graph.
The third part involves visualizing the teleworking report and
summary for a selected week, along with personalized advice.
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