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Abstract. While most of the work done in Privacy-Preserving Data
Publishing does the assumption of a trusted central publisher, this paper
advocates a fully decentralized way of publishing anonymized datasets.
It capitalizes on the emergence of more and more powerful and versatile
Secure Portable Tokens raising new alternatives to manage and protect
personal data. The proposed approach allows the delivery of sanitized
datasets extracted from personal data hosted by a large population of
Secure Portable Tokens. The central idea lies in distributing the trust
among the data owners while deterring dishonest participants to cheat
with the protocols. Deviant behaviors are deterred thanks to a combina-
tion of preventive and curative measures. Experimental results confirm
the effectiveness of the solution.

1 Introduction

Privacy-Preserving Data Publishing (PPDP) attempts to deliver useful micro-
data sets for knowledge-based decision making without revealing the identity
of individuals. A typical PPDP scenario starts by a collection phase where the
data publisher (e.g., a hospital) collects data from data owners (e.g., patients).
It is followed by a construction phase during which the sanitization rules are
computed, and an anonymization phase where the publisher applies these rules
to the data. The data can finally be released to a set of data recipients (e.g., a
drug company or a public agency) for data mining or inquiry purposes.

Most research in the PPDP area considers a trusted model: the data pub-
lisher is trustworthy, therefore data owners easily consent providing it with their
personal information [6]. This is unfortunately rarely the case in practice. There
are many examples of privacy violations arising from negligence, abusive use,
internal attacks, external attacks, and even the most secured servers are not
spared1. ALL this has severely damaged individuals’ trust in central servers.
Moreover, legislation regulating the use of personal data usually authorizes sta-
tistical processing without the explicit consent of data owners, assuming this
consent was given for the initial purpose of the data collection [1, 2]. A side ef-
fect is the reinforcement of individuals’ suspicion towards the centralization of
their data on any server. Their fears can even be high enough to halt nationwide
projects [3] and many epidemiologists complain about the difficulty to get user’s
consent to participate in cohorts.

In this paper, we suggest a different way of publishing sanitized datasets
with the objective to withdraw the major point of vulnerability introduced by

1 http://datalossdb.org/



a central publisher. The core idea is to let each owner manage his data au-
tonomously, under his own control, and participate in a distributed sanitization
protocol using the storage and communication facilities provided by an untrusted
publisher. This idea builds upon the emergence of new hardware devices called
Secure Portable Tokens (SPTs for short). Whatever their form factor (SIM card,
secure USB stick, wireless secure dongle), SPTs provide an unprecedented com-
bination of portability (they are connectable to any terminal), secure process-
ing (thanks to a tamper resistant smart card microcontroller) and mass stable
storage (Gigabytes-sized NAND Flash chip). The use of SPTs for e-governance
(citizen card, driving license, passport, social security, transportation, education,
etc) is already actively investigated by many countries, and personal healthcare
folders embedded in SPTs receive a growing interest, e.g., the Health eCard 2 in
UK, the eGK card 3 in Germany, the HealthSmart Network 4 in the USA. Many
kinds of personal data could actually be managed and protected thanks to a SPT
with security guarantees stronger than those provided by any central server. This
raises a natural question “How can we sanitize personal data embedded in Secure
Portable Tokens without reintroducing a leak in the architecture?”.

Answering this question means designing a protocol which produces an anonymized
version of a database horizontally split among a population of trusted SPTs, such
that the untrusted environment surrounding the SPTs can never learn more than
the final result. This concern has been partially addressed by a limited number
of works so far, in a way which unfortunately severely limits their practical
scope. Secure Multi-party Computation protocols (SMC) allows several parties
to jointly compute a function without revealing their input to one another [15].
Theoretically, any problem representable as a circuit can be securely solved, but
the computation cost grows exponentially with the input size [8]. This disqualifies
them for sanitizing widely distributed datasets. More efficient SMC constructs
have been proposed to implement specific distributed PPDP protocols [17, 18,
10]. However, strong assumptions are made concerning the attack model (e.g.,
introduction of a Trusted Third Party in [10], absence of collusion between the
Publisher and a Helper Third Party in [17]) and on the communication model,
the underlying cryptographic protocols requiring broadcasting messages among
all parties.

Does it mean that a general solution is unreachable? The problem is tough-
ened by the SMC severe assumption that no one trusts anyone. The approach
promoted in this paper actually makes the opposite assumption. It distributes
trust among all data owners while deterring dishonest data owners to cheat
with the protocols. Two ways of deterring deviant behaviors of parties are com-
bined. The first way is preventive and relies on the tamper-resistance of each
data owner’s SPT. Although ultimate security does not exist, tamper-resistant
hardware significantly increases the Cost/Benefit ratio of an attack. We have
previously shown in a technical report (reference not included for the double

2 http://www.healthecard.co.uk
3 http://www.gematik.de
4 http://www.healthsmartnetwork.com/



blind review process) that simple and secure PPDP protocols can be devised
under the assumption that SPTs cannot be broken by any attacker. The second
way is curative and relies on a mechanism detecting cheating parties, that is
to say an attacker compromizing one or more SPT. This paper focuses on this
second aspect.

Hence, this paper makes the following contributions. First, it proposes a prob-
abilistic approach to detect compromized participants and show the effectiveness
of this approach (the detection probability is close to 1). Second, it builds on
this result to propose a new distributed PPDP computing model combining
preventive and curative security measures. While the level of security reached
by a probabilistic approach cannot be compared to SMC, we argue that it is
high enough to meet the requirements of a broad set of applications, and no-
tably Privacy-Preserving Data Publishing. Combining curative and preventive
security significantly enlarges the scope and applicability of the approach. Our
expectation is also that such a combination could pave the way for new solutions
adapted to various privacy-preserving computing problems.

The rest of this paper is organized as follows. Section 2 details the problem
statement by introducing a motivating scenario, stating the assumptions made
on the distributed architecture and on the anonymization technique and fixing
the attack model considered in this work. Section 3 briefly recalls the preventive
way of deterring attacks. Section 4 introduces the curative way of deterring
attacks and Section 5 evaluates its effectiveness. Finally, Section 6 concludes.

2 Problem Statement

2.1 Motivating example

The motivating example presented below capitalizes on a real experiment con-
ducted in the field to improve the coordination of medical and social care for
elderly people, while giving the control back to the patient over how her data
is accessed and shared5. The ageing of population makes the organization of
home care a crucial issue and requires sharing medical and social information
between different participants (doctors, nurses, social workers, home helpers and
family circle). Server-based Electronic Health Record solutions are inadequate
because (1) the access to the folder is conditioned by the existence of a high
speed and secure internet connection at any place and any time; and (2) they
fail in providing ultimate security guarantees to the patients, a fundamental con-
cern for patients facing complex human situations (diagnosis of terminal illness,
addictions, financial difficulties, etc). This experimental project addresses these
concerns as follows. Each patient is equipped with a SPT embedding a personal
server managing her medical-social folder. As pictured in Figure 1, the form
factor of patient’s SPT is a USB token. A central server achieves the data dura-
bility by maintaining an encrypted archive of each patient’s folder. The patient’s

5 The name and location of this experimental project are hidden for double blind
review concern.



folder includes social information such as financial resources or scores measuring
possible lack of autonomy, as well as medical data like diagnosis, treatments,
and evolution of medical metrics (e.g., weight, blood pressure, cholesterol, etc.).
This mix of medical and social information is of utmost interest for statistical
studies.

When a practitioner visits a patient, the patient is free to provide her SPT
or not, depending on her willingness to let the practitioner physically access it.
In the positive case, the practitioner plugs the patient’s SPT into his terminal,
authenticates to the SPT server and can query and update the patient’s folder
according to his access rights, through a simple web browser. The patient’s data
never appears on any central server and no trace of interaction is ever stored in
any terminal. If the patient looses her SPT, the SPT tamper-resistance renders
potential attacks harmless. The folder can then be recovered from the encrypted
archive maintained by the central server.

Now, let us assume that a health agency decides to collect sensitive data
to perform an epidemiological study. Even paranoid patients will be disposed to
consent participating in the study because: (1) they have the guarantee that their
data will never be exposed on any server before being accurately anonymized,
(2) they trust other patient’s SPT to obey the protocol, knowing that tampering
a SPT even by its owner is very difficult and (3) even in the improbable situation
where a SPT is cracked, the cheater will be detected with a probability close to
1. When they are receiving care, their SPT does not remain idle but receives
anonymization tasks from the agency and performs them in the background.
Data used by these tasks is protected from prying eyes because it is kept confined
in the SPT’s secure environment. So, patients can enjoy their healthcare folder
with full confidence without compromising neither their own rights to privacy
nor any collective healthcare benefits.

Let us stress that the challenge tackled by this paper is not restricted to the
healthcare domain. More generally, similar scenarios can be envisioned each time
the legislation recognizes the right of the record owner to control under which
conditions her personal data is stored.

2.2 Functional Architecture
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Fig. 1. Anonymous release of data stored on SPTs



Global Picture Figure 1 illustrates the functional architecture and modus
operandi considered in the paper. The architecture is composed of two parts.
The Trusted Environment (TE) is constituted by the set of SPTs participat-
ing in the infrastructure. Each SPT hosts the personal data of a single record
owner. However, it can take part in a distributed computation involving data
issued from multiple record owners since all the SPTs a priori trust each other.
The number of participating SPTs is application dependent and may vary from
tens of thousands in a small environment (e.g., a specific clinical study over a
selected cohort) to millions in a region-wide or nation-wide initiative (e.g., an
epidemiological study for a nation-wide health research program). The Untrusted
Environment (UE) encompasses the rest of the computing infrastructure, in par-
ticular the data publisher and the data recipients. In the following, we make the
simplifying assumption that UE has unlimited computing power and storage
capacity, and is available 24/7.

The Secure Portable Token Regardless of their form factor, SPTs share sev-
eral hardware commonalities. Their microcontroller is typically equipped today
with a 32 bit RISC processor (clocked at about 50 MHz), ROM, small static
RAM, a small internal stable storage (NOR Flash or EEPROM) and security
modules providing tamper-resistance. The microcontroller is connected by a bus
to a large external mass storage (Gigabytes of NAND Flash). Contrary to the
microcontroller, this external mass storage is not hardware protected; hence data
stored there must be encrypted, but the cryptographic keys and the encryption
process remain confined within the microcontroller. SPTs can communicate with
the outside world through various standards (e.g., USB2.0, bluetooth, 802.11)
[11]. In summary, a SPT can be seen as a basic but very cheap (already today
only a few dollars), highly portable, highly secure computer with reasonable stor-
age and computing capacity for personal use. For illustration purposes, Fig. 1
depicts the SPT used in the experimental project described above and in our
experiments.

The trustworthiness of SPTs lies in two factors: (1) the embedded software
inherits the tamper resistance of the microcontroller making hardware and side-
channel attacks highly difficult, (2) this software is itself certified according to the
Common Criteria 6, making software attacks also highly difficult. This strongly
increases the Cost

Benefit ratio of an attack compared to a traditional server, con-
sidering also that a successful attack compromises only the data of a single
individual. Note finally that the SPT owner herself cannot directly access the
data stored locally; she must authenticate, thanks to a PIN code or a certificate,
and only gets data according to her own privileges.

6 http://www.commoncriteriaportal.org/



2.3 Privacy Model

The core idea of the approach proposed in this paper is independent of any
privacy model. However, in order to favor a firm understanding we use the illus-
trative and popular k-anonymity privacy model [14] presented below.

We model the dataset to be anonymized as a single table T (ID, QID, SD)
where each tuple represents the information related to an individual hosted by
a given SPT. ID is a set of attributes uniquely identifying an individual (e.g.,
a social security number). QID is a set of attributes, called quasi-identifiers,
that could potentially identify an individual depending on the data distribution
(e.g., a combination of Birthdate, Sex and Zipcode). The SD attributes contain
sensitive data, such as an illness in the case of medical records. The table schema,
and more precisely the composition of QID and SD, is application dependent.
It is assumed to be defined before the collection phase starts, and is shared by
UE and all SPTs participating in the same application (e.g., the same healthcare
network).

The first anonymization action is to drop ID attributes. However, QID at-
tributes can be used to join different data sources in order to link back an indi-
vidual to its specific sensitive data with high probability. k-anonymity proposes
to make such linkages ambiguous by hiding individuals into a crowd: it is often
achieved by generalizing the QIDs to form equivalence classes (see [6] for a good
overview), where each class contains (at least) k tuples sharing the same gener-
alized QID′. Generalization-based algorithms (e.g., [13, 9]) partition the tuples
into equivalence classes based on their QID values such that each class con-
tains at least k tuples. An equivalence class is defined by a set of generalization
nodes that specify the generalization of the QID values of the tuples belonging
to the class. Figure 2 shows an example of raw data, a possible partitioning
into equivalence classes containing k ≥ 2 tuples, and the resulting 2-anonymous
dataset. Anonymizing the tuples whose QIDs are in the equivalence class EC1

simply means replacing their QID values by EC1’s generalization nodes, i.e.,
〈[75001, 75002], [22, 31]〉.

2.4 Attack Model

Intents As stated in the introduction, most research in the PPDP area consid-
ers a trusted model. We could go one step further and consider the well-known
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Honest-but-Curious adversary model. In this model, an attacker obeys the pro-
tocol it is participating in but tries to infer confidential data by any indirect way.
In this paper, we devise solutions acceptable by users who directly question the
honesty of servers, either because they delegate part of their work to - potentially
untrusted - subcontractors or because they are themselves vulnerable to internal
and external attacks. So, we consider in this study a stronger adversary model
called Weakly-Malicious [16]. In this model, an attacker cheats the protocol he
is involved in only if (1) he is not detected as an adversary and (2) the final
result is correct.

The weakly-malicious attack model fits particularly well the PPDP context.
First, the longer an attack remains undetected, the bigger the benefit for the
attacker. Second, the detection of an attack puts the attacker in an awkward po-
sition. This is true in all practical PPDP situations, whoever the attacker: (1) an
insider within the PPDP organization, (2) the PPDP organization itself or (3) a
subcontractor implementing the PPDP protocol on the organization behalf. In-
deed, if the data leak is revealed in a public place, participants are likely to refuse
to participate in further studies with an irreversible political/financial/public
health damage (the halt of the Dutch EHR is an illustrative example) and they
can even engage a class action.

Abilities The use of secure hardware in our solution leads us to slightly enrich
the weakly-malicious attack model depending on the ability of the attacker to
break one or more SPTs or not. Although breaking one SPT requires signifi-
cant resources due to their proven high tamper-resistance, the attack could be
launched if its benefits outweigh its cost. Hence we distinguish two variants of
the weakly-malicious attack model:

– Weakly-MaliciousSoft: the attacker has weakly-malicious intent and the abil-
ities of the attacker are said Soft in that it is unable to breach the hardware
security of any SPT.

– Weakly-MaliciousHard: the attacker has weakly-malicious intent and the abil-
ities of the attacker are said Hard because it is able to break at least one
SPTs and disclose its internal cryptographic material.

3 Weakly-MaliciousSoft UE

This section overviews the Weakly-MaliciousSoft protocol as a foundation for
the Weakly-MaliciousHard protocol. We refer the interested reader to a tech-
nical report (withdrawn for double blind review concerns) for a more detailed
discussion.

3.1 Rethinking the Traditional PPDP Phases

In the traditional (trusted) PPDP context, the publisher collects raw tuples of
the form 〈QID, SD〉 during the Collection phase, computes equivalence classes



during the Construction phase, and replaces the QID of each tuple by the gen-
eralization node of the class it belongs to during the Anonymization phase. To
defeat weakly-malicious attacks, the link between each QID and its related SD
must be kept hidden throughout all the phases, while still allowing the publisher
to compute and release k-anonymous classes. This leads to adapt the three phases
of the protocol as follows.

During the Collection phase, each connecting SPT (that agrees to partici-
pate in the study) sends the publisher its QID in clear and its SD encrypted by
a symmetric encryption scheme (e.g., based on the AES encryption function).
The encryption scheme takes as parameter a secret key shared by all SPTs (key
management is discussed in the next paragraph). The publisher decides to stop
collecting tuples and to launch the Construction phase when it has received
enough QIDs to build equivalence classes precise enough for its application-
dependent requirements. During the Anonymization phase, any SPT that
connects downloads a class (or more if its connection duration allows), and re-
turns to UE the decrypted SDs it contains (in random order). The returned
SDs are k-anonymous with certainty because the partial states observed by UE
give no information allowing it to infer the association between a given SD and
QID in clear with more precision than k.

Sharing cryptographic material among all SPTs does not hurt the Weakly-
MaliciousSoft assumptions since SPTs are considered unbreakable. We will relax
this assumption in Section 4 when considering the Weakly-MaliciousHard attack
model. We do the simplifying assumption that the SPT provider pre-installs the
cryptographic materials inside the SPT’s secured chip, though more dynamic
protocols could easily be devised. Let us stress that even the SPT’s owner cannot
spy the hidden content or the computation made by her own SPT (in the same
way as a banking card owner cannot gain access to the encryption keys pre-
installed in her smart card microcontroller).

3.2 Weakly-MaliciousSoft Actions

A Weakly-MaliciousSoft UE can tamper the collected tuples based on either
Create, Destroy, or Copy actions. Creating or destroying tuple(s) inside a given
equivalence class directly leads to a reduction of the k-anonymity property (e.g.,
creating t fake tuples and adding them to (k−t) collected tuples results in a (k−
t)-anonymous class). Copying (i.e., duplicating) a set of tuples within a class (i.e.,
intra-class copy) also leads to a similar reduction of the k-anonymity property.
Finally, copying a subset of tuples from a class C1 to another class C2 (i.e.,
inter-class copy) leads to inferences based on computing the differences between
the respective SDs and QIDs of these two classes. Indeed, (1) the common
SDs returned for both classes correspond to the common QIDs of these classes
(i.e. the copied subset of tuples), and (2) the SDs returned for only one class
correspond to the QIDs belonging to that class only. Thus computing the set-
difference allows the UE to link subsets of collected QIDs to subsets of returned
SDs with a probability less than 1/k. These attacks are called differential attacks.



3.3 Safety Properties

Complete Coverage Safety properties aim at preventing the above actions.
The Origin property guarantees that tuples originate from SPTs thereby pre-
venting Create actions. By asserting that a class contains at least k tuples, the
Cardinality property prevents Destroy actions. The Distinguishability property
prevents intra-class Copy actions by asserting that all tuples are unique within
a class. Finally, the conjunction of the following properties prevents inter-class
Copy actions: the Specialization property requires each tuple to appear in a class
that generalizes its QID (in other words, each tuple is at a legitimate place), the
Mutual Exclusion property guarantees that the generalization nodes of different
classes do not overlap (there is a single legitimate place for each tuple), and the
Invariance property asserts that each class boundaries (i.e., its generalisation
nodes) is always associated to the same tuples (the content of a class does not
change over time).

Safety properties defeat the complete list of attacks UE can launch. It follows
that processing equivalence classes satisfying all these properties will generate a
k-anonymous result set with certainty.

Enforcement The Origin, Cardinality, Distinguishability, and Specialization
properties can be easily checked during the Anonymization phase by a SPT
on each downloaded class independently from the other classes. For example,
enforcing Origin consists in checking for each tuple a message authentication
code (MAC) [7] produced during the Collection Phase.

The Mutual Exclusion and Invariance properties concern the relation of each
class to the whole set of classes already sent to SPTs. Checking them would
require that SPTs share global information about the classes that each of them
receives. There is no ultimate solution to this problem since (1) SPTs cannot
communicate directly with one another and (2) cannot share a global history
through UE, since UE can delete such information. Since each SPT relies on its
own local history, UE could select the equivalence class sent to it such that all
the properties are satisfied from the SPT viewpoint while they are violated from
a global viewpoint. We deter UE from violating global properties by making any
violation visible to SPTs through two caveat actions. The first caveat action
precludes UE to control which SPT receives which equivalence class by using an
anonymous communication channel [12] between UE and SPTs. The probability
to send classes violating the global properties to the same SPT is no longer
null. The second caveat action is to force UE to produce a Summary of the
equivalence classes. This summary contains for all classes their generalization
nodes plus a digest of their content (e.g., a hash of their tuples). Any SPT
connecting during the Anonymization phase first downloads this summary to
check the Mutual Exclusion and Invariance properties, and then downloads a
class and checks its consistency with the summary. Hence, any tampering of
a class must be cascaded to the summary, which is sent to all the connecting
SPTs. Any SPT receiving two disagreeing summaries detects the attack. As a
result, the detection is probabilistic, and its probability depends on the number



of SPTs receiving each version of the summary. The detection probability can
be brought to highly deterring values (e.g., over 0.99) by tuning the minimal
number of SPTs receiving each class. This can be done by setting this number
to a low value (typically under 10).

3.4 Feasibility of the solution

For the sake of completeness, we summarize here the key results of our perfor-
mance evaluation of the weakly-maliciousSoft protocol. This protocol has been
implemented and is being integrated in the architecture described in Section 2.1.
The SPT hardware platform used in this architecture is still under test so the
performance measurements have been conducted on a cycle-accurate hardware
emulator provided by (Remove for double blind?) Gemalto (the world leader
in smart cards), industrial partner of the project.

The measures have been performed with a synthetic population of 106 indi-
viduals, k varying from 10 to 100. The computing and transfer cost internal to
each SPT amounted to couples of seconds, imputable mainly to transferring the
summary and checking the global properties. The worst case occurred when k
was minimal (8.8 seconds to treat a class when k = 10 while the cost is only 1.7
seconds when k = 100) because the number of classes was then maximal (and so
was the size of the summary). These results confirm the feasibility of the solu-
tion, showing that it can match the performance requirements of many practical
situations even in worst cases. Note that computing and transfer times scale lin-
early with the size of the population under study because of the linear increase
of the summary’s size. We also measured the latencies of the Collection and
Anonymization phases. The main insight is that the latency of the Anonymiza-
tion phase is insignificant with respect to the latency of the Collection phase.
The interested reader will be referred to a technical report (withdrawn now for
double-blind review concerns).

4 Weakly-MaliciousHard UE

In the previous Weakly-MaliciousSoft protocol, if UE succeeds in breaking at
least one SPT, it unveils not only the SPT’s tuple but also its cryptographic
materials which can in turn be used to decrypt the contents of all equivalence
classes. To limit the scope of such attacks, the traditional solution is to use n
different keys and organize the encryption process so that the impact of com-
promising one key is divided by n. Consequently, we partition SPTs into a set of
clusters, denoted C, randomly and evenly, such that SPTs belonging to different
clusters are equipped with distinct cryptographic materials. Therefore breaking
a SPT amounts to breaking a single cluster, and not the complete system any-
more. However, it gives to the attacker the ability not only to decrypt data sent
by SPTs that are members of the broken cluster, but also to encrypt data that
originates from the broken cluster: weakly-maliciousSoft Create actions can now
pass the Origin property test.



This section first describes an adaptation of the Weakly-MaliciousSoft proto-
col to a clustered world. Then it introduces a new safety property guaranteeing
that weakly-malicious Create actions are harmless, and describes its enforce-
ment. Finally, it describes the global Weakly-MaliciousHard protocol.

4.1 Clustered SPTs

Clustering cryptographic materials limits the decryption ability of SPTs to tuples
originating from their own clusters. To tackle this limitation, SPTs participating
in the Collection phase append the identifier of their cluster ID (CID) to the
tuples sent to UE. Hence, each SPT participating in the Anonymization phase
can ask to UE to send it a class into which its CID appears. However, a side
effect of communicating to UE the CID of the connecting SPT is to reveal
the CID of the returned anonymized tuples. UE would thus be able to link
the returned tuples to the subgroup of collected tuples having the same CID.
Since the subgroup’s cardinality is most likely less than k, the returned tuples
would be (less-than-k)-anonymous. To avoid this linking attack, the choice of
the downloaded class must be made in stand alone by the connecting SPT, to
which UE has previously sent the list of CIDs appearing in every classes.

Special care must also be taken of the number of anonymized tuples returned
by a SPT. Indeed, a similar inference can be made by comparing this number
to the cardinality of each subgroup of collected tuples sharing the same CID
in the concerned class. To avoid this inference, SPTs downloading a same class
must equalize the number of tuples they return; whatever their cluster, they
must return at most GCD tuples, GCD being the greatest common divisor of
the cardinalities of the subgroups inside the given class. To allow counting the
number of tuples per cluster, each collected tuple t embeds an encrypted tuple
and cluster identifier produced by the owner’s SPT.

Transferring the complete list of CIDs per class between UE and a SPT can
incur a significant network overhead. This overhead can be reduced by represent-
ing the list of CIDs of each class by a bitmap such that for all CIDs appearing
in the class, the bit at index CID is set to 1. Each list is thus made of |C| bits
and there are |EC| lists. The total overhead amounts to transferring |C| × |EC|
bits. At the rate of 8Mbps (i.e., the current effective throughput measured on
the hardware platform shown in Fig. 1), this does not present any bottleneck.
Finding a class into which the SPT’s CID appears has a negligible cost since it
consists in checking a single bit per class bitmap.

4.2 Defeating Create Attacks

Weakly-malicious Create actions reduce the effective k-anonymity of a class by
mixing j collected tuples, j < k, and injecting (k−j) fake tuples forged thanks to
the cryptographic materials of the broken cluster (let us assume for the moment
that a single cluster is broken). The tampered class can contain far more forged
tuples than legitimate ones. This is both the strength of the attack (it reduces
the effective k in the same proportion) and its weakness (it is easier to detect).



Indeed, since SPTs are randomly and evenly partitioned into clusters, UE should
receive roughly the same number of tuples per cluster, scattered uniformly into
the equivalence classes. Inside a class affected by a weakly-malicious Create
action, all clusters participate roughly with the same number of tuples, except
the broken one that participates more than the others. We define a new Typicality
safety property based on this observation stating that the participation of each
cluster within a given class must be typical with respect to the participation of all
other clusters. The above discussion can be generalized to an arbitrary number
of broken clusters. Obviously, the more clusters are broken, the less atypical they
are. However, breaking the hardware security of a single SPT is already a rather
difficult task, making a massive weakly-malicious attack unrealistic.

SPTs enforce the Typicality property at the reception of a class, by analyzing
statistical properties of the participation of clusters within the class. Section 5
demonstrates experimentally the efficiency of the attack detection by a straight-
forward analysis of the standard deviation of the participations in the class.
Though more complex analysis could be designed by, e.g, using various statisti-
cal measures depending on the participations distribution (e.g., measures used
for outliers detection [5]), the standard deviation analysis already reaches high
detection rates despite its simplicity.

4.3 Weakly-MaliciousHard Protocol

Algorithm 1 gives the execution sequence of the weakly-maliciousHard pro-
tocol from the Collection phase to the Anonymization phase. If a check is not
fulfilled, the SPT stops the execution and raises an alarm (e.g., to the destina-
tion of the SPT owner or a trusted third party). Due to lack of space, we do not
detail the mechanisms that are also part of the weakly-maliciousSoft protocol
(most notably the safety properties checks and duplicate removal).

5 Detection Probability

We consider a population under study of N = 106 individuals, randomly parti-
tioned in |C| = 5.102 clusters. In our experiments, all clusters are of equal size,
but comparable results would be achieved with a normal distribution of indi-
viduals in clusters. The anonymization algorithm that we implemented divided
the dataset into |EC| = 8.103 classes of at least k = 102 tuples each. Increasing
the size of the population yields similar results in terms of detection. Since the
distribution of SPTs to clusters is random, the clusters participation in a given
class follows a normal distribution. To test the typicality of a cluster Cj ∈ C
participating in the class ECi ∈ EC, we compute σ the standard deviation (ex-
cluding non-participating clusters). In the general case, where |C| � k and there
are no fake tuples created by UE, σ is very small (in our experiment, its average
value was σavg ≈ 0.36 and its largest observed value was σmax ≈ 0.62).

Figure 3(a) shows the evolution of σ function of the number of tuples forged
by a UE having broken a single SPT (then a single cluster). For instance, if



Algorithm 1 Weakly-MaliciousHard Protocol

Require: An anonymous communication channel between the SPTs and UE, the
k-anonymity level, s the size of the population under study, C the clusters, the
secret and private/public keys of clusters ∀Cj ∈ C 〈κj , πe|dj 〉 with their respective

encryption/decryption functions 〈Ee|d, P 〉.
1: Collection phase: For i = 1...s, each SPTi, that connects sends to

UE its tuple whose schema is 〈QID,CID,Enc, Sign〉, and whose value
is 〈QIDi, CIDj , Eeκj

(TIDi, SDi), Pπe
j
(〈TIDi, QIDi, SDi, Cj〉), where TIDi is

SPTi’s identifier, QIDi and SDi his personal data, and CIDj his cluster’s CID.
2: Construction phase: UE computes the set of equivalence classes EC and the

summary S that contains for each class ECj a bitmap representing the participating
clusters (ECj .β).

3: Anonymization phase:
4: repeat
5: SPTi connects to UE. Let SPTi.β denote the bitmap representation of his clus-

ter’s identifier CIDj .
6: Download the summary S.
7: if @ ECl.β ∈ S s.t. (SPTi.β ANDbinary ECl.β) 6= 0 then
8: Disconnect.
9: else

10: Download the ECl’s tuples ECl.T and their signatures.
11: Let c denote the number of distinct clusters in ECl.
12: end if
13: Check the validity of tuples’s signatures:

∀ t ∈ ECl.T, Pπd
j
(t.S) = 〈t.T ID, t.QID,Edκj

(t.Enc).SD,Edκj
(t.Enc).CID〉.

14: Count the participation of each cluster Cm appearing in ECl:
∀m = 1...c, pm = COUNT (t ∈ ECl.T s.t. t.CID = Cm).

15: Check that the counts of participations are “typical”.
16: Compute the greatest common divisor of clusters’s participations:

γ ← GCD(p1, ..., pc).
17: Send (at most) γ decrypted SDs from tuples that originate from CIDj .
18: until All classes have been completely anonymized

UE creates t tuples, then the class will contain only k − t collected tuples. In
order to achieve perfect knowledge of a target tuple (e.g., the tuple of a target
individual identified by its QID), UE would need to inject k − 1 tuples (in our
example, 99 tuples) in the class of the target tuple. As shown in Figure 3(a), a
cluster participating more than 5 tuples leads to a statistically improbable value
(i.e., σ > σmax). Note that Figure 3(a) is a zoom: evolution is not linear but
polynomial. If UE succeeds in breaking several clusters (meaning breaking SPTs
from different clusters), fake tuples have less impact on the standard deviation
because UE can distribute the participation over them. Figure 3(b) illustrates the
value of σ function of the number of broken clusters b over which UE distributed
evenly k − 1 = 99 created tuples (which means identifying the value of the only
one that was not forged): at least 31 different clusters need to be broken to have
σ < σmax and 43 to have σ < σavg. Situations that demand stronger detection
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Fig. 3. Standard Deviation Sensitivity

levels can be satisfied simply by increasing the number of clusters. Indeed, it is
obvious that the values of the standard deviations (average and maximal) are
inversely proportional to the number of clusters.

Although more complex statistical analysis could be used (e.g., combining
several statistical measures, chosing the measure according to the participations
distribution), the above experimental results show that even a simple analysis
of the standard deviation already makes weakly-malicioushard attacks harmless.
Indeed, launching a successful attack would require breaking a large number of
clusters, which is unrealistic because of the added costs of physically being in
possession of a large number of SPTs and compromizing their hardware protec-
tions.

6 Concluding remarks

Version 0.1
In this article, we have presented a robust protocol to deal with the anonymisa-
tion of data produced by smart tokens, despite the fact that a small number of
them could be broken. We illustrated this approach showing how the well-known
Mondrian algorithm could be adapted, and secured against weakly-malicious at-
tacks. More generally, attacks that can be devised will always be based on the
same actions: Create, Destroy and Copy. Similarly, since deterrance resides in a
probabilistic detection mechanism, the same sort of detection can be guaranteed
for other types of algorithms.

The other specificity of our application is that it relies on secure hardware,
which although cheap to produce is very costly to break. Yet the global approach
is much broader. It could be adopted whenever a distributed application which
is able to place some trust in participants wants to defend itself against weakly
malicious attacks. Indeed, as we have shown in the experimentation, probabilistic
detection is acheived even when a large number of clusters are broken, therefore



this means that our technique is applicable in contexts where the tokens are not
“as secured” as the ones we use.

Version 0.2 (en cours)
Secure Multi-party Computation techniques fail in reaching a generic solution to
Privacy-Preserving Data Publishing problems with an affordable cost. We believe
that this is in part due to the strong “no-one-trusts-anyone” assumption. This
paper promotes an approach based on the opposite assumption: all participants
a priori trust each other. We propose to deter participants to adopt deviant
behaviors (1) preventively by equiping participants with secure hardware and
(2) curatively by detecting cheating parties.

We believe that this approach, illustrated above by the well-known k-anonymity
privacy model, can be straightforwardly generalized to many distributed com-
putation tasks for which participants are assumed to provide data in a uniform
way. Actually, different applications may have different trust assumptions about
participants. Some low-sensitive applications may not consider equiping partic-
ipants with secure hardware and rely on the high detection probability to deter
cheats, while more sensitive applications may need to rely on both to obtain a
satisfying security level. The preventive and curative actions can indeed be used
independently from the other to meet the desired security level.

Future work?
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