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Abstract

This work focuses on the representation of uncertain and potentially contradictory information

and on how to reason with them. Here we consider crisps and probabilistic information. We

build on the work of [KMR21] where the authors define so called non-standard probabilities

over Belnap–Dunn logic. Belnap, in How a computer should think [Bel19], proposes this

propositional logic to model the information a computer might have at its disposal about

a statement: the statement might be true - that is supported by the evidence -, false - that

is contradicted by the evidence -, neither supported nor contradicted, both supported nor

contradicted. Building on [KMR21], we propose a modular logical framework to formalize

probabilistic reasoning based on inconsistent information [Bı́l+20]. Then we generalise their

proposal from probabilities to belief functions [Bı́l+22]. Belief functions are a generalisation

of probabilities that allows to represent incomplete information about a probability distribution.

Belief functions are used extensively in order to represent pieces of evidence. Dempster–

Shafer theory proposes a rule to aggregate belief functions that is, to obtain a belief function

that encodes the information conveyed by many pieces of evidence. Many variations of

Dempster–Shafer rule have been proposed, however it remains a benchmark to which these

proposals are compared. Therefore, we study the impact of applying Dempster–Shafer rule

to belief functions over Belnap–Dunn logic rather than over classical logic. Finally, pursue

on that line of research by studying ways to update belief functions over Belnap–Dunn logic

[FMN22].
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Introduction

Every day we have to make decisions based on various pieces of information. In fact, to form

beliefs about the world, we collect and process data of different origins to provide us with

reliable information concerning particular issues. The information at our disposal might be

unequivocal (e.g., one sees the rain outside, therefore one knows it is raining), but it might

also be incomplete or contradictory. Indeed, we have no information whether (to employ the

most overused example) the decimal representation of π contains two thousand 9’s in a row.

On the other hand, we have both evidence for and against the efficacy of mirror therapy in

phantom pain treatment.

Reasoning with incomplete and inconsistent information. Incompleteness of information

alone is ever-present when reasoning about data. Applications, such as relational databases,

often use many-valued logics to properly account for indefiniteness. Namely, Kleene’s three-

valued logic [Kle52] became the design choice of SQL and similar systems (the use of Kleene’s

logic in this context was first proposed by [Cod75], and argued optimal in [CGL18].) In

[Bel19], Belnap introduced a four-valued logic with intended database applications (see e.g.

[GO15]), which extends Kleene’s logic, but also allows to model reasoning with non-trivial

inconsistencies. Further developed by Dunn [Dun76], Belnap-Dunn four-valued logic BD,

also referred to as First Degree Entailment, became a prominent logical framework which

encompasses reasoning with both incomplete and inconsistent information. In fact, in the

logical context, the logics that can non-trivially reason with contradictory statements are called

paraconsistent and the ones that allow incomplete information by rejecting the law of excluded
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middle go under the moniker paracomplete. For our purpose, we require a logic that is both

paraconsistent and paracomplete. Ideally, this logic should explicitly differentiate between all

four types of information an agent can have regarding a statement ϕ : that ϕ is only told to be

true; that ϕ is only told to be false; that one was not told whether ϕ is true or false; and that

one was told both that ϕ is true and that it is false. Originally, in [Bel19], BD was formulated

as a four-valued logic with truth table semantics where each value from {t,b,n, f} represents

the information a computer (a reasoning agent) might have regarding a statement.

• t stands for ‘just told True’.

• f stands for ‘just told False’.

• b (or ‘both’) stands for ‘told both True and False’.

• n (or ‘neither’) stands for ‘told neither True nor False’.

More precisely, this logic evaluates formulas to Belnap-Dunn square – a lattice built over

an extended set of truth values {t, f ,b,n}, where b and n correspond to inconsistent and

incomplete information respectively (Figure 1, middle). One of the underlying ideas of this

logic is that not only truth, but also amount of information that formulas carry (reflected by

the four semantical values) matters. This idea was generalized by introducing the algebraic

notion of bilattices by Ginsberg [Gin88] in the context of AI, and studied further in [Riv10;

JR12]. Bilattices contain two lattice orders simultaneously: a truth order, and a knowledge

(or an information) order. Belnap-Dunn square, the smallest interlaced bilattice, can be seen

as the product bilattice of the two-element lattice (Figure 1, left) where the truth-values are

pairs of classical values which can be naturally interpreted as representing two independent

dimensions of information – positive and negative one1. We can understand them as providing

positive and negative support for statements independently. It was used to provide the logic

with the double-valuation frame semantics by Dunn [Dun76].

1This independence assumption has in fact a support in scientific practice – if an experiment confirming a
hypothesis fails, does not automatically mean it is rejected.
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Figure 1: The product bilattice 2⊙ 2 (left), which is isomorphic to Dunn-Belnap square 4
(middle), and its continuous probabilistic extension (right). Negation flips the values along the
horizontal line.

Representation of uncertainty. The information one has is often not only just incomplete

or inconsistent, but also bears a degree of uncertainty. This is why one needs a probability

theory that accounts for contradictory and incomplete information. In fact, the problem of

dealing with inconsistency concerns probabilistic information as well. There are essentially

two ways out. One way is to get rid of inconsistencies, the other way is to develop systems

with inference rules which can work with inconsistent premises. While on the logic side there

are systems providing both kinds of solutions, for example belief revision or paraconsistent

logics, the majority of solutions on the probability side go for the first solution – getting rid of

inconsistency (cf. the Dempster–Shafer theory of belief functions [Dem68]) – and the attempts

of the second kind emerged only relatively recently. Zhou [Zho13] extends the theory of belief

functions to the setting of distributive lattices, in particular bilattices and de Morgan lattices,

and provides a complete logic to reason about belief functions based on BD. Michael Dunn

[Dun10] defines a probabilistic framework over four-valued logic and studies properties of

the resulting probabilistic entailment. The idea of an independent account for positive and

negative information, underlying the double-valuation semantics of BD, naturally generali-

zes to non-classical probabilistic extensions of Belnap-Dunn four-valued logic proposed in

[KMR21], which we use and extend in this thesis. It generalizes Belnap–Dunn logic in a

similar way as classical probability theory generalizes propositional logic, and is referred to as

theory of non-standard probabilities. Furthermore, two versions of non-classical probability

functions were given a complete axiomatisation. The first is based on independent treatment

of positive and negative probabilistic information (the authors call it non-standard probability),
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the second works with a direct assignment of probabilities to the four values of Belnap–Dunn

logic (generalizing an earlier work of M. Dunn on this topic). Both approaches were proven to

be equivalent.

Logical formalisms. When it comes to management of uncertainty, probability and other

measures of uncertainty can be understood as graded notions, as one tries to quantify the

plausibility of unverified events typically over the interval [0,1]. Graded notions are one of

the subjects traditionally studied by methods of fuzzy logics. As probability is not truth-

functional, it does not admit a straightforward treatment by logical methods. However,

one may deal with probability as a modal operator in logical systems (cf. [Ham59]), for

example in the systems of modal fuzzy logic [Háj98]. There are two main approaches to

probabilistic modalities over classical logic: two-layered and intensional. The two-layered

logical formalism introduced in [FHM90; Hal17] separates the non-modal lower language of

events from the modal upper language of probabilities. The system divides into three parts:

lower level of classical propositional reasoning, reasoning about probabilities consisting of the

axioms that characterize probability measures in finite spaces, and the upper level of reasoning

about (Boolean combinations of) linear inequalities. Hájek [Háj98] proposed to replace the

quantitative reasoning in form of linear inequalities with many-valued reasoning, namely

Łukasiewicz logic, in such formalism on the upper level to obtain a fuzzy probability logic

for formal reasoning under uncertainty. The graded modality “probably”, which can be used

to model belief of an agent understood as a kind of subjective probability, is interpreted as a

finitely-additive probability on a Boolean algebra of events with values in the real unit interval.

Consequently, a class of modal logics for dealing with virtually any uncertainty measure has

been covered by the formalism in [CN14].

Structure and contribution of the thesis. My thesis is part of a larger researcher project

aiming at extending the framework to encompass reasoning with inconsistent probability

information. For this purpose, we first study non-standard probabilities over Belnap-Dunn

logic and then we generalise belief functions over Belnap-Dunn logic, and, algebraically,

over De Morgan algebras (recall from [Fon97] that Belnap-Dunn logic is the logic of De
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Morgan algebras). This part of our work is inspired by [Zho13] which provides treatment of

belief functions on distributive lattices. Our goal is to expand that approach to incorporate

De Morgan (but still non-classical) negation ¬. The detailed structure and contribution of the

thesis is as follows:

• Second Chapter: Preliminaries. Here we explain the algebraic concepts such as

distributive lattices, De Morgan algebras, bilattices, MV -algebras and also Belnap–

Dunn logic, its semantics and disjunctive normal forms. Then we explain mass, belief,

plausibility functions, Dempster-Shafer combination rule and non-standard probabilities

in details and in particular adapt them to De Morgan algebras. In addition we provide

some lemmas that we will use later in the thesis.

• Third Chapter: Reasoning based on inconsistent information. This chapter which

is a reprint of [Bı́l+20], is the first steps of the work. We start building the general

idea of the thesis and considering the different choices that we can have to attack the

problem. We propose an analysis of how belief can be based on information, where the

confirmation comes from multiple possibly conflicting sources and is of a probabilistic

nature. We use Belnap-Dunn logic and its probabilistic extensions to account for

potentially contradictory information on which belief is grounded. We combine it with

an extension of Lukasiewicz logic, or a bilattice logic, within a two-layer modal logical

framework to account for belief. The two-layer modal logics is proposed for belief of

a single agent, belief that is grounded on probabilistic information provided (positive

and negative information independently) by multiple sources. The underlying logic of

facts or events is chosen to be BD, the upper logic varies between BD and logics derived

from Łukasiewicz logic and based on product or bilattice algebras, to systematically

account for positive and negative information independently (and thus incompleteness

and conflict) on both levels.

• Forth Chapter: Belief functions over Belnap–Dunn logic. In this chapter which is

a reprint of [Bı́l+22], we start working on questions about belief representation and

their aggregations on BD logic. First, we generalise belief and plausibility functions

5



over BD logic, and algebraically, over De Morgan algebras. On the other words, we

design an expansion of Belnap-Dunn logic with belief and plausibility functions that

allows non-trivial reasoning with inconsistent and incomplete probabilistic information.

In addition, based on the fact that in the Dempster Shafer combination rule we get rid

of contradictory information it is predictable that this rule does give counterintuitive

results in presence of contradictory information. As we show this problem can be solved

and this rule can be adapted over the frameworks that allows us to have contradictory

information.

• Fifth Chapter: Updating belief functions over Belnap–Dunn logic. In this chapter

which is a reprint of [FMN22], we focus on the natural question which is understanding

the behavior of probability, belief and plausibility in the situation where we find a new

piece of evidence. In the literature, for example [Hal17], different ways of updating

belief and plausibility functions, in the classical framework, is represented. We adapt

and interpret those results within the framework of belief and plausibility functions over

Belnap-Dunn logic that we have already define in the previous chapters. We present

a first approach via a frame semantics of Belnap-Dunn logic. This frame semantics,

relying on sets, we can use Bayesian update and Dempster-Shafer combination rule over

powerset algebras to define their corresponding updates within the framework of BD

logic.

6



CHAPTER

1
Background and

related work

In this chapter, we first recall standard definitions and provide some background information

considering lattices, BD logic, Dempster-Shafer theory and non-standard probabilities and fix

notational conventions. We also present some lemmas that we will need in the next chapters,

and briefly describe some works closest to ours. Note that for a set X , by P(X) we mean

powerset of the set X .

1.1 Lattices

Let P= ⟨P,≤P⟩ and Q= ⟨Q,≤Q⟩ be two partially ordered sets (posets). A function f : P→ Q

is called monotone if, for every x,y ∈ P, x≤P y implies that f (x)≤Q f (y). It is called strictly

monotone if x <P y implies that f (x)<Q f (y). A structure L= ⟨L,∨,∧⟩, consisting of a set L

and two binary, commutative, associative, and idempotent operations, ∨ and ∧, on L is called

a lattice if the operations satisfy the following rules: x∨ (x∧ y) = x and x∧ (x∨ y) = x, for all

x,y ∈ L.

A bounded lattice is a tuple L = ⟨L,∨,∧,⊤,⊥⟩, such that ⟨L,∨,∧⟩ is a lattice and for

every element x ∈ L : x∨⊤ = ⊤ and x∧⊥ = ⊥. Obviously, every finite lattice has a least

and a greatest element, but we reserve the term ‘bounded lattice’ for the case when the lattice

signature contains ⊤ and ⊥. For bounded lattices, we define
∨
∅ := ⊥ and

∧
∅ := ⊤. For



finite unbounded lattices L, we define
∨
∅ :=

∧
l∈L

l and
∧
∅ :=

∨
l∈L

l. A lattice L is:

• distributive if (x∨ y)∧ z = (x∧ z)∨ (y∧ z) holds for all x,y,z ∈ L;

• complemented if L is bounded and every x ∈ L has a complement: i.e., for every x ∈ L,

there exists x′ ∈ L, such that x∧ x′ =⊥ and x∨ x′ =⊤;

• a (bounded) De Morgan algebra if it is (bounded,) distributive, and equipped with an

additional unary operation ¬ such that ¬¬x = x and ¬(x∧y) = ¬x∨¬y for any x,y ∈L;

• a Boolean algebra if it is a bounded and complemented De Morgan algebra s.t. ∼ is its

negation and ∼a is the only complement of a.

Convention 1.1.1. Throughout the manuscript, we denote proper De Morgan negations with

¬ and Boolean negations with ∼.

It is well-known that every finite Boolean algebra is isomorphic to the Boolean algebra

⟨P(S),⊆⟩ for some set S. For a bounded lattice ⟨P(S),⊆⟩, we have ∨= ∪, ∧= ∩, ⊤= S and

⊥=∅.

Note that, in bounded De Morgan algebras, the following holds: ¬(x∨ y) = ¬x∧¬y,

¬⊤ = ⊥ and ¬⊥ = ⊤. The law of excluded middle, ¬x∨ x = ⊤, and the principle of

explosion, x∧¬x =⊥, however, do not always hold.

Definition 1.1.1. A logic is a tuple L= ⟨L ,⊢⟩ with L being a language over {◦1, . . . ,◦n}

and ⊢⊆ P(L )×L where ⊢ is reflexive and transitive. A Lindenbaum algebra of L (denoted

LL) is a tuple ⟨L /⊣⊢,•1, . . . ,•n⟩ where for each i ∈ {1, . . . ,n} and each ϕ,ϕ ′ ∈L , it holds

that [ϕ ◦i ϕ ′] = [ϕ]•i [ϕ
′] with [ϕ] being the equivalence class of ϕ under ⊣⊢.

Some bilattices and MV algebras For the definition and results about bilattices we refer

to [Avr96]. A bilattice is an algebra B= ⟨B,∧,∨,⊓,⊔,¬⟩ such that the reducts ⟨B,∧,∨⟩ and

⟨B,⊓,⊔⟩ are both lattices and the negation ¬ is a unary operation satisfying that for every

a,b ∈ B,

if a≤t b then ¬b≤t ¬a, if a≤k b then ¬a≤k ¬b, a = ¬¬a,

8



with ≤t (resp. ≤k) the order on ⟨B,∧,∨⟩ (resp. ⟨B,⊓,⊔⟩) called the truth (resp. knowledge or

information) order. So the negation has the interpretation that if a is less true than b then ¬b is

less true than ¬a and if your knowledge about a is less than your knowledge about b then still

your knowledge about ¬a is less than your knowledge about ¬b. A bilattice is interlaced if

each one of the four operations ∧, ∨, ⊓, ⊔ is monotone w.r.t. both orders ≤t and ≤k (e.g. if

a≤t b then a∧ c≤t b∧ c). Bilattices, as well as interlaced bilattices, form a variety. We recall

the definition of variety. Let ε be a set of lattice identities (equations), and denote by Modε

the class of all lattices that satisfy every identity in ε . A class V of lattices is a lattice variety if

V = Mod ε for some set of lattice identities ε . The class of all lattices, is of course a lattice

variety since it is equal to Mod /0. Given an arbitrary lattice L= ⟨L,∧L,∨L⟩, we can construct

the product bilattice L⊙L= ⟨L×L,∧,∨,⊓,⊔,¬⟩ as follows: for all (a1,a2),(b1,b2) ∈ L×L,

(a1,a2)≤t (b1,b2) iff a1 ≤ b1 and b2 ≤ a2

¬(a1,a2) := (a2,a1)

(a1,a2)∧ (b1,b2) := (a1∧L b1,a2∨L b2)

(a1,a2)∨ (b1,b2) := (a1∨L b1,a2∧L b2)

(a1,a2)⊓ (b1,b2) := (a1∧L b1,a2∧L b2)

(a1,a2)⊔ (b1,b2) := (a1∨L b1,a2∨L b2)

L⊙L is always an interlaced bilattice, and any interlaced bilattice can be represented as

a product billatice: a bilattice B is interlaced if and only if there is a lattice L such that

B∼= L⊙L [Avr96, Proposition 3.4].

Example 1.1.1. The smallest interlaced bilattice is the product bilattice of the two-element

lattice 2⊙ 2 (Figure 1.1 left). It is isomorphic to Dunn-Belnap square 4 used as a matrix

of truth values for Belnap-Dunn logic (Figure 1.1 middle), with {t,b} being the designated

values.

Example 1.1.2. A probabilistic extension of Dunn-Belnap square (Figure 1.1 right) can be

seen as based on the product bilattice L[0,1]⊙L[0,1], where L[0,1] = ⟨[0,1],min,max⟩.

9



(0,1)

(0,0) (1,1)

(1,0)

f

n b

t

(0,0)

(1,0)

(0,1)

(1,1)

Figure 1.1: The product bilattice 2⊙2 (left), which is isomorphic to Dunn-Belnap square 4
(middle), and its continuous probabilistic extension (right). Negation flips the values along the
horizontal line.

Definition 1.1.2. A residuated lattice is an algebra L= ⟨L,∧L,∨L, ·,\,/⟩, where the reduct

⟨L,∧L,∨L⟩ is a lattice, ⟨L, ·⟩ is a semi-group (i.e. the operation · is associative) and the

residuation properties hold: for all a,b,c ∈ L:

a ·b≤ c iff b≤ a\ c iff a≤ c/b.

Example 1.1.3. 1. [0,1]Ł = ⟨[0,1],∧,∨,&Ł,→Ł⟩, the standard algebra of Łukasiewicz

logic, is a residuated lattice, an MV algebra1, and it generates the variety of MV

algebras. (As &Ł is commutative, the two implications coincide.) For all a,b ∈ [0,1],

we define a negation ∼Ła := a→Ł 0 := 1−a, and the standard operations

a∧b := min{a,b}, a&Łb := max{0,a+b−1},

a∨b := max{a,b}, a→Ł b := min{1,1−a+b}.

2. [0,1]op
Ł = ([0,1]op,∨,∧,⊕Ł,⊖Ł) arises turning the standard algebra upside down, and

is isomorphic to the original one. Here, we have ∼Ła := 1⊖Ł a,

a⊕Ł b≈∼a→Ł b = min{1,a+b} a⊖Ł b≈∼(a→Ł b) = max{0,a−b}.

3. Finally, we will consider the product MV algebra [0,1]Ł×[0,1]op
Ł =([0,1]×[0,1]op,∧,∨,

1For more on Łukasiewicz logic and MV algebras (in particular finite standard completeness w.r.t. [0,1]Ł)
see e.g. [DL11].
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&,→) with operations defined pointwise, ∼(a1,a2) := a→ (0,1) = (∼a1,∼a2), and:

(a1,a2)&(b1,b2) := (a1&Łb1,a2⊕Ł b2)

(a1,a2)→ (b1,b2) := (a1→Ł b1,b2⊖Ł a2) = (a1→Ł b1,∼a2&Łb2).

As both the projections are surjective homomorphisms of MV algebras, this algebra also

generates the variety of MV algebras.

Given a residuated lattice L= ⟨L,∧L,∨L, ·,\,/⟩ the product residuated bilattice [JR12]

L⊙L= ⟨L×L,∧,∨,⊓,⊔,⊃,⊂,¬⟩ is defined as follows: the reduct ⟨L×L,∧,∨,⊓,⊔⟩ is the

product bilattice ⟨L,∧L,∨L⟩⊙⟨L,∧L,∨L⟩ and, for all (a1,a2),(b1,b2) ∈ L×L,

(a1,a2)⊃ (b1,b2) := (a1 \b1,b2 ·a1), (a1,a2)⊂ (b1,b2) := (a1/b1,b1 ·a2).

One can then define the following operations: for all a,b ∈ L×L,

a→ b := (a⊃ b)∧ (¬a⊂ ¬b), a← b := ¬a→¬b, a∗b := ¬(b→¬a).

For any product residuated bilattice, the structure ⟨L×L,∧,∨,∗,→,←,¬⟩ is a residuated

bilattice endowed with an involutive negation. If · is commutative (associative), so is ∗.

Example 1.1.4. The product residuated bilattice arising from the standard MV algebra is the

structure [0,1]Ł⊙ [0,1]Ł = ⟨[0,1]× [0,1],∧,∨,⊓,⊔,⊃,¬,(0,0)⟩ where:

(a1,a2)∗ (b1,b2) := (a1&Łb1,(a1→Ł b2)∧ (b1→Ł a2))

(a1,a2)→ (b1,b2) := ((a1→Ł b1)∧ (b2→Ł a2),a1&Łb2),

and (1,1) acts as the unit of the ∗: (1,1)∗a = a∗ (1,1) = a.2 We define

∼a := (a⊃ (0,0))⊔¬(¬a⊃ (0,0)) = (∼Ła1,∼Ła2)

a⊕b := (∼a⊃ b)⊔¬(∼¬a⊃ ¬b) = (a1⊕Ł b1,a2⊕Ł b2)

a⊖b :=∼(a⊃ b)⊓¬∼(¬a⊃ ¬b) = (a1⊖Ł b1,a2⊖Ł b2).

From [JR12], we know that the (isomorphic copies of) product residuated bilattices obtained

2Definitions of→,∗ match those used in [CDK06] for interval based fuzzy logics, via a transformation given
by (x1,x2) 7→ (x1,1− x2) (symmetry across the (0,0.5)(1,0.5) line).
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from MV algebras form a variety, and its axiomatization can be obtained by translating the

one of MV algebras (in the language of residuated lattices)3.

1.2 Belnap-Dunn logic

BD logic mentioned in the introduction was introduced by Nuel Belnap in [Bel19]. His main

aim was to design a logical system capable of dealing with inconsistent or/and incomplete

information. Formulas in Belnap–Dunn logic can be not only True or False, but can also have

values Both or Neither. In this section, we are presenting Belnap–Dunn logic (BD) in more

details — a propositional logic over {¬,∧,∨} and its conservative extension with constants

⊤ and ⊥ — BD∗. More formally, we fix a finite (or countable) set Prop of propositional

variables and define complex formulas via the following grammars:

LBD ∋ ϕ := p ∈ Prop | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ

and

L ∗
BD ∋ ϕ := p ∈ Prop | ⊤ | ⊥ | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ.

We also define Lit= Prop∪{¬p : p ∈ Prop} and denote

Var(ϕ) = {p ∈ Prop : p occurs in ϕ}, Lit(ϕ) = {l ∈ Lit : l occurs in ϕ}.

BD can be axiomatised using the following axioms from [Pre18]:

ϕ ∧χ ⊢ ϕ ϕ ∧χ ⊢ χ ϕ ⊢ ϕ ∨χ χ ⊢ ϕ ∨χ

ϕ ∨ψ ⊢ ¬¬ϕ ∨ψ ϕ,χ ⊢ ϕ ∧χ ¬¬ϕ ∨ψ ⊢ ϕ ∨ψ ϕ ∨ϕ ⊢ ϕ

ϕ ∨ (χ ∨ψ) ⊢ (ϕ ∨χ)∨ψ ϕ ∧ (χ ∨ψ) ⊢ (ϕ ∧χ)∨ (ϕ ∧ψ)

3[JR12] hints at the correspondence between subvarieties of residuated lattices and residuated bilattices being
categorial. This would mean that the mentioned variety is in fact generated by the product bilattice of the standard
MV algebra. One could then use the translation from [JR12] to obtain axiomatics of the logic introduced at the
end of Subsection 2.2.1.
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(ϕ ∧χ)∨ (ϕ ∧ψ) ⊢ ϕ ∨ (χ ∧ψ)

¬(ϕ ∧χ)∨ψ ⊢ (¬ϕ ∨¬χ)∨ψ (¬ϕ ∨¬χ)∨ψ ⊢ ¬(ϕ ∧χ)∨ψ

¬(ϕ ∨χ)∨ψ ⊢ (¬ϕ ∧¬χ)∨ψ (¬ϕ ∧¬χ)∨ψ ⊢ ¬(ϕ ∨ψ)∨ψ

BD also is completely axiomatized using the following axioms and rules:

ϕ ∧ψ ⊢ ϕ ϕ ∧ψ ⊢ ψ

ϕ ⊢ ψ ∨ϕ ϕ ⊢ ϕ ∨ψ

ϕ ⊢ ¬¬ϕ ¬¬ϕ ⊢ ϕ

ϕ ∧ (ψ ∨χ) ⊢ (ϕ ∧ψ)∨ (ϕ ∧χ)

ϕ ⊢ ψ,ψ ⊢ χ

ϕ ⊢ χ

ϕ ⊢ ψ,ϕ ⊢ χ

ϕ ⊢ ψ ∧χ

ϕ ⊢ χ,ψ ⊢ χ

ϕ ∨ψ ⊢ χ

ϕ ⊢ ψ

¬ψ ⊢ ¬ϕ

BD∗ can be axiomatised by adding the following axioms:

∅ ⊢ ⊤ ¬⊤∨ϕ ⊢ ϕ ∅ ⊢ ¬⊥ ⊥∨ϕ ⊢ ϕ

We will say that ϕ and ψ are equivalent, denoted ϕ ⊣⊢BD ψ , iff both ϕ ⊢ ψ and ψ ⊢ ϕ are

derivable.

There are several ways to provide semantics for BD (cf., e.g. [OW17]). In addition to

the already mentioned truth table semantics, one can treat BD as the logic of De Morgan

algebras. Indeed, it is clear from [Fon97, Proposition 2.5] that LBD = ⟨LBD/⊣⊢BD ,∧,∨,¬⟩

is the Lindenbaum algebra of BD and that LBD is actually a De Morgan algebra. Hence, its

¬-less reduct L+
BD = ⟨LBD/⊣⊢BD ,∧,∨⟩ is a distributive lattice. The Lindenbaum algebra of
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BD∗ is the bounded De Morgan algebra LBD = ⟨LBD/⊣⊢BD∗ ,∧,∨,¬⟩ and is denoted L∗BD.

The other way of defining semantic for BD is the frame semantic with two valuations: v+

and v− which are intuitively interpreted as support of truth and support of falsity. This approach

will allow us to treat BD probabilistically and is also in line with its original motivation (one

can think of each state as a source that gives us information).

In this context, w ⊨+ ϕ can be interpreted as ‘source w states that ϕ is true’. Note that this

does not exclude the possibility of w telling that ϕ is false as well. Neither not stating that ϕ

is false implies that w says that ϕ is true. One can think of w as being a database that may

(or may not) have information about ϕ . The database may for instance contain both ‘Tom’s

birthday is on February, 29th’ and ‘Tom’s birthday is on March, 1st’ and also no information at

all whether Tom likes apple pies. If we add constants, ⊥ represents absurdity or incoherence,

a piece of information that the agent rejects without considering it. It is important to note that

a contradiction is not absurdity or incoherence: it is perfectly possible that a source provides

inconsistent data. Dually, ⊤ is a piece of trivial information: the one that is accepted to be

true without questions and does not provide any information. Again, an instance of a classical

tautology, say p∨¬p, is not trivial in this framework for it is possible that a source says

nothing on p, nor on its negation. We start by more formal definitions.

Definition 1.2.1 (Belnap–Dunn models). A Belnap–Dunn model is a tuple M= ⟨W,v+,v−⟩

with W ̸=∅ and v+,v− : Prop→ P(W ).

Definition 1.2.2 (Frame semantics for BD). Let ϕ,ϕ ′ ∈LBD. For a model M= ⟨W,v+,v−⟩,

we define notions of w ⊨+ ϕ and w ⊨− ϕ for w ∈W as follows.

w ⊨+ p iff w ∈ v+(p) w ⊨− p iff w ∈ v−(p)

w ⊨+ ¬ϕ iff w ⊨− ϕ w ⊨− ¬ϕ iff w ⊨+ ϕ

w ⊨+ ϕ ∧ϕ
′ iff w ⊨+ ϕ and w ⊨+ ϕ

′ w ⊨− ϕ ∧ϕ
′ iff w ⊨− ϕ or w ⊨− ϕ

′

w ⊨+ ϕ ∨ϕ
′ iff w ⊨+ ϕ or w ⊨+ ϕ

′ w ⊨− ϕ ∨ϕ
′ iff w ⊨− ϕ and w ⊨− ϕ

′

In BD∗, the formulas ⊥ and ⊤ are interpreted as follows:

w ⊨+ ⊤ w ⊭− ⊤ w ⊭+ ⊥ w ⊨− ⊥
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We denote the positive and negative interpretations of a formula as follows:

|ϕ|+ := {w ∈W | w ⊨+ ϕ} |ϕ|− := {w ∈W | w ⊨− ϕ}.

We will make use of the notions of the positive extension of a formula (the set of states

supporting it): |ϕ|+ = {w ∈W |w ⊨+ ϕ}, and analogously the negative extension of a formula

|ϕ|− = {w ∈W | w ⊨− ϕ}. Notice that in general a negative extension is not a set theoretical

complement of the corresponding positive extension, i.e. |ϕ|+∪|ϕ|− ⊊ S (some states might

support neither ϕ nor ¬ϕ) and |ϕ|+∩|ϕ|− ̸=∅ (states in the intersection support both ϕ and

¬ϕ). Moreover, positive and negative extensions are mutually definable: |¬ϕ|+ = |ϕ|−.

Convention 1.2.1. In the remainder of the text, we will not distinguish between a formula and

its equivalence class in the Lindenbaum algebra. Therefore, we will write |ϕ|+ both for the

positive interpretation of the formula and for the set of states that satisfy all the formulas in

the equivalence class of ϕ . We will always specify whether ϕ refers to the formula or to its

equivalence class.

Definition 1.2.3. We say that a sequent ϕ ⊢BD χ is valid on M = ⟨W,v+,v−⟩ (denoted,

M |= [ϕ ⊢BD χ]) iff for any w ∈W, it holds that:

• if w ⊨+ ϕ , then w ⊨+ χ as well;

• if w ⊨− χ , then w ⊨− ϕ as well.

We drop the subscript when the logic at stake is obvious from the context and we use ϕ ⊢ χ

instead of ϕ ⊢BD χ . A sequent ϕ ⊢ χ is universally valid iff it is valid on every model. In this

case, we will say that ϕ entails χ . For the sake of readability, we avoid subscripts, but we will

always specify which logic (BD or BD∗) we are considering.

We also will use another way for presenting semanics for BD logic in the part that we

present two-layered logic. In fact, Belnap-Dunn logic evaluates formulas to Belnap-Dunn

square – the (de Morgan) lattice 4 built over an extended set of truth values {t, f ,b,n} (Figure

1.1, middle). The consequence relation of logic BD is given, based on the logical matrix (4,F)
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with F = {t,b} being the designated values, as

Γ ⊨BD ϕ iff ∀e (e[Γ]⊆ F → e(ϕ) ∈ F).

Another frame semantics can also be given for BD. Belnap-Dunn four-valued model is a tuple

⟨W,4,e⟩ where W is a set of states and e is a valuation of atomic formulas e : Prop×W → 4.

The valuation is extended to formulas of LBD using the algebraic operations on 4 in the

expected way. It is known to be (strongly) complete w.r.t. the algebraic and the double

valuation (or 4-valued) frame semantics. BD is also known to be locally finite.4

In what follows, we present a special version of disjunctive normal forms, X-full DNFs

(with X being a set of literals). Intuitively, an X-full DNF of ϕ lists all possible clauses over

X that entail ϕ in BD. This gives a straightforward connection to frame semantics since

each state validates some finite set of literals. Furthermore, X-full DNFs are unique up to

permutations of literals and clauses which enables their use as canonical counterparts of a

given formula.

Definition 1.2.4 (Clauses and normal forms). A conjunctive (resp., disjunctive) clause is

a conjunction (resp., disjunction) of literals and (or) constants. We define the following normal

forms of the formulas in languages LBD and L ∗
BD.

• ϕ is in negation normal form (NNF) iff it does not contain any of the following subfor-

mulas: ¬¬ψ , ¬(ψ ∨ψ ′), ¬(ψ ∧ψ ′), ¬⊤, ¬⊥;

• ϕ is in disjunctive normal form iff it is a disjunction of conjunctive clauses;

• ϕ is in conjunctive normal form iff it is a conjunction of disjunctive clauses.

Definition 1.2.5 (X-full disjunctive normal form). Let ϕ ∈LBD and let further X ⊇ Lit(ϕ)

be finite and ¬-closed, i.e.

∀p ∈ Var : p ∈ X ⇔¬p ∈ X

4It means there are only finitely many (up to inter-derivability) formulas in a fixed finite set of propositional
variables. It affects the completeness of the logic in Subsection 2.2.1. More on BD and its properties can be
found e.g. in the thesis [Pre18].
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A
∧

-X-clause cl is a non-empty subset of X. An X-full disjunctive normal form of ϕ

(fDNFX(ϕ) or fDNF(ϕ) if there is no risk of confusion) is defined as the disjunction of all∧
-X-clauses entailing ϕ over BD.

fDNFX(ϕ) :=
∨

cl ⊢BD ϕ

cl

To define X-full disjunctive normal form for formulas ϕ ∈L ∗
BD, we need

∧
-X-clause to

be a non-empty subset of X, ⊥, or ⊤. The X-full disjunctive normal form of ϕ is denoted

fDNF∗X(ϕ) or fDNF∗(ϕ)

The next example shows how to transform a formula into its fDNF.

Example 1.2.1. Let X = {p,¬p,q,¬q}. Consider p and p∧q. Clearly, both p and p∧q are

already in DNF. We now need to add the remaining clauses:

fDNFX(p) = p∨ (p∧¬p)∨ (p∧q)∨ (p∧¬q)∨ (p∧¬p∧q)

∨ (p∧¬p∧¬q)∨ (p∧q∧¬q)∨ (p∧¬p∧q∧¬q)

fDNFX(p∧q) = (p∧q)∨ (p∧¬p∧q)∨ (p∧q∧¬q)∨ (p∧¬p∧q∧¬q)

Observe that
∧

X itself is always present in the fDNFX .

Definition 1.2.6 (Irredundant disjunctive normal forms: iDNF). A conjunctive clause is

irredundant if it contains each literal at most once. A formula ϕ is in irredundant disjunctive

normal form if it is a disjunction of irredundant conjunctive clauses, and moreover, if ϕ =
∨
i∈I

ϕi,

then, for every i, j ∈ I such that i ̸= j, Lit(ϕi) ̸⊆ Lit(ϕ j).

Intuitively, no clause of an iDNF implies another one. For example, if Lit= {p,q,¬p,¬q}

then (p∧q)∨ (p∧¬q) is in iDNF but (p∧q)∨ p is not.

1.3 Dempster-Shafer Theory

Many generalisations of classical probability theory, such as inner and outer measures [Hal50],

belief and plausibility functions [Sha76], upper and lower probabilities [Dem67], have been
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developed to account for the fact that an agent is not necessarily capable of assigning prob-

abilities to all events. Among the approaches that deal with uncertainty we have chosen

Dempster–Shafer theory of belief functions (also called Dempster–Shafer theory of evidence).

In this section we explain in details the theory and the concepts used in this theory. This theory

first has been introduced by Dempster [Dem67] and Shafer [Sha76] on Boolean algebras

and has been generalised to distributive lattices. Since we study this theorem on De Morgan

algebras we need to explain the definition and theorems on lattices and note that they all hold

for Boolean structures as a particular case. The key concept in Dempster shafer theory is

belief function which is inseparable from mass functions. On the other hand, mass functions

are indeed special case of Möbius transforms. We first explain Möbius transforms not only

for the sake of understanding mass function but also we will need them in some parts of our

work. Then after that we provide the interpretation of belief and plausibility functions over De

Morgan algebras. We also give some results and lemmas that will be needed later.

Monotone functions on posets and their Möbius transforms It is well-known (cf. [Sta11,

Proposition 3.7.1]) that if f is an arbitrary real-valued function on a poset P= ⟨P,≤⟩, then

there exists a unique function g on P, called the Möbius transform of f such that:

f (x) = ∑
y≤x

g(y) iff g(x) = ∑
y≤x

µ(y,x) · f (y) (1.1)

where µ : P×P→ R is the Möbius function defined recursively as follows:

µ(y,x) =


1 if y = x,

− ∑
y≤t<x

µ(y, t) if y < x,

0 if y > x.

(1.2)

Belief functions, plausibility functions and their associated mass functions We slightly

generalize the definitions that were initially proposed in the context of Boolean algebras in

order to encompass the case of De Morgan algebras. We need to do this because existing

definitions and results consider belief functions on bounded lattices. In our work in different

chapters, however, sometimes we study belief functions within the framework of BD which is
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usually considered without constants ⊥ and ⊤. Therefore, its associated Lindenbaum algebras

are unbounded De Morgan algebras. So we try to distinguish our definitions by the term

”general”, so we have (general) belief functions and (general) plausibility functions as follows.

Definition 1.3.1 (k-monotonicity). Let L be a lattice and f : L→ [0,1].

• f is k-monotone if, for every a1, . . . ,ak ∈ L, it holds that

f

( ∨
1≤i≤k

ai

)
≥ ∑

J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 · f

(∧
j∈J

a j

)
. (1.3)

• f is weakly totally monotone, if f is k-monotone for k ≥ 1.

Definition 1.3.2 (k-valuation). Let L be a lattice and f : L→ [0,1].

• f is k-valuation if, for every a1, . . . ,ak ∈ L, it holds that

f

( ∨
1≤i≤k

ai

)
= ∑

J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 · f

(∧
j∈J

a j

)
. (1.4)

• f is ∞-valuation, if f is k-valuation for k ≥ 1.

Remark 1.3.1. The name k-monotone and totally monotone are the ones used in the literature,

however notice that k-monotonicity or even totally monotonicity do not imply monotonicity.

Therefore, here we call weakly totally monotone the maps that are usually called totally

monotone in [Gra09; Zho13]. In fact, these maps were initially introduced by Barthélemy in

[Bar00] and referred to as weakly totally monotone. The name k-monotone and totally mono-

tone which come from the literature are counter-intuitive, however notice that k-monotonicity

or even totally monotonicity do not imply monotonicity.

In what follows, we give an example of an ∞-valuation which is not a monotone function.

This example can be also considered as a totally monotone function which is not monotone.

First we need some lemmas.

19



Lemma 1.3.1. Let n ∈N. If f is a n-valuation and f (⊥) = 0, then it is a k-valuation for every

k ∈ N such that 1≤ k ≤ n.

Proof. We proceed by induction. We know by assumption that f is a n-valuation and we show

that for every k≥ 3 if f is a k-valuation then it is a (k−1)-valuation. Let (x1, . . . ,xk−1)∈Lk−1

and f be a k-valuation. We have

f (x1∨ . . .∨ xk−1) = f (x1∨ . . .∨ xk−1∨⊥)

= ∑
J⊆{x1,...xk−1,⊥},J ̸=∅

(−1)|J|+1 f

(∧
y∈J

y

)
(by induction hypothesis)

= ∑
J⊆{x1,...xk−1},J ̸=∅

(−1)|J|+1 f

(∧
y∈J

y

)
.

The last equality holds because one can eliminate the terms containing ⊥, since f (⊥) = 0.

Therefore, f is a (k−1)-valuation.

Lemma 1.3.2. Let L be a lattice and |L| = n ≥ 4, then every (n−2)-valuation on L is an

∞-valuation.

Proof. By Lemma 1.3.1 we just need to prove that it is a k-valuation for every k ≥ n−2. We

proceed by induction. By assumption f is a (n−2)-valuation. Now we show that for every

k ≥ n−2 if f is a k-valuation on L it is a (k+1)-valuation. Let (a1, . . . ,ak+1) ∈ Lk+1, then

we have the following cases:

(a) there exist i ̸= j such that ai = a j. W.l.g. we can assume that ak = ak+1:

f (a1∨ . . .∨ak+1) = f (a1∨ . . .∨ak)

= ∑
J⊆{1,...,k},J ̸=∅

(−1)|J|+1 f

(∧
j∈J

a j

)
( f is a k-valuation)

= ∑
J⊆{1,...k+1},J ̸=∅

(−1)|J|+1 f

(∧
j∈J

a j

)

the last equality holds since in the last sum, we have some new summands which are can

be divided in two: those who contains k+1 and k we call them A and those containing
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k+1 and not k which we denote by B. The summand (−1)|J|+1 f

( ∧
j∈J

a j

)
’s, where J ∈

B, will be eliminated by the summand (−1)|J
′|+1 f

( ∧
j∈J′

a j

)
’s where J′ = J∪{k} ∈A .

So all the new elements will be eliminated pairwise.

(b) ai’s are pairwise distinct and w.l.g we have two cases:

(1) a1 =⊥ then

f (a1∨ . . .∨ak+1) = f (a2∨ . . .∨ak+1)

= ∑
J⊆{2,...,k+1},J ̸=∅

(−1)|J|+1 f

(∧
j∈J

a j

)
( f being k-valuation)

= ∑
J⊆{1,...,k+1},J ̸=∅

(−1)|J|+1 f

(∧
j∈J

a j

)
( f

( ∧
j∈J

a j

)
= f (⊥) = 0 if 1 ∈ J)

(2) a1 = ⊤ then the non-empty elements of P(J) where J = {1, . . . ,k+ 1} consist of

two collections: those not containing 1, say A , and those containing 1, say B. And

θ : A →B\ {{1}} such that θ(T ) = T ∪{1} is a bijection. Notice that

(−1)|T |+1 f (
∧
j∈T

a j)+(−1)|θ(T )|+1 f (
∧

j∈θ(T )

a j) = 0,

so in the sum ∑
J⊆{1,...,k+1},J ̸=∅

(−1)|J|+1 f

( ∧
j∈J

a j

)
the summands based on T ⊆ J, where

T ∈A , eliminate the summands based on T ∪{1} ⊆ J so the only remaining term will

be f (a1) so:

∑
J⊆{1,...,k+1},J ̸=∅

(−1)|J|+1 f

(∧
j∈J

a j

)
= f (a1) = f (⊤) = 1

= f (a1∨ . . .∨ak+1)

So by Lemma 1.3.1 f is an ∞-valuation.

Example 1.3.1. Consider the following 4-element chain ( say⊥≤ a≤ b≤⊤) and the function
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f defined as f (⊥) = 0, f (a) = 1, f (b) = 0 and f (⊤) = 1 which we show on the figure below

on the left.

1

0

1

0

1

(1)

0

0

(2)

0

1

(3)

1

0

(4)

1

This lattice is a distributive lattice and for showing that the function f is a ∞-valuation we

just need to show that it is a 2-valuation (based on or Lemma 1.3.2). For checking whether

this function is a 2 valuation we have 6 cases (picking 2 distinct elements among 4) which will

boil down to the four cases in the left part of the above figure. In all this cases we can see that

f (a∨b) = f (a)+ f (b)− f (a∧b), in fact we have the following computations:

Case 1: 1 = 0+1−0

Case 2: 0 = 0+0−0

Case 3: 1 = 1+1−1

Case 4: 0 = 0+1−1

So this function is a 2-valuation and so by Lemma 1.3.2 is a ∞-valuation (therefore totally

monotone), but not a monotone function.

In what follows, we introduce definitions and properties about belief and plausibility

functions.

Definition 1.3.3 ((General) belief functions). Let L be a lattice. A function bel : L→ [0,1] is

called a general belief function if the following conditions hold:

• bel is monotone with respect to L, that is, for every x,y ∈ L, if x≤L y, then bel(x)≤

bel(y),
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• bel is weakly totally monotone, that is, for every k≥ 1 and every a1, . . . ,ak ∈L, it holds

that

bel

( ∨
1≤i≤k

ai

)
≥ ∑

J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·bel

(∧
j∈J

a j

)
. (1.5)

A general belief function bel on a bounded lattice L is called belief function if bel(⊥) = 0

and bel(⊤) = 1.

Definition 1.3.4 ((General) mass function). Let S ̸= ∅. A general mass function on S is

a function m : S→ [0,1] such that 0 ≤ ∑
x∈S

m(x) ≤ 1. A mass function on S is a function

m : S→ [0,1] such that ∑
x∈S

m(x) = 1.

The following theorem, [Zho13, Theorem 2.8], presents another characterisation of belief

functions which is based on their mass assignment.

Theorem 1.3.1. [Zho13, Theorem 2.8] Let L be a finite bounded lattice and f : L→ [0,1] be

a monotone function such that f (⊤) = 1 and f (⊥) = 0. Let further, g be the Möbius transform

of f . Then, the following statements are equivalent:

1. f is weakly totally monotone (that is, f is a belief function);

2. g is a mass function.

Notice that [Zho13, Theorem 2.8] states that f is weakly totally monotone iff g is non-

negative, but it is immediate to prove that g is indeed a mass function.

In many parts of our work, we will work with the generalized notions, general belief

function and general mass function. Therefore, we will need the following theorem. which is

used to prove Theorem 1.3.2. We can look at it as a characterisation of general belief function

based on their Möbius transform. But before that we need the following lemma.

Lemma 1.3.3. [Zho13, Lemma 2.6] Let µ : P(X)→R be a function such that: µ(∅) = 0 and

µ(A∪B) = µ(A)+µ(B)−µ(A∩B) for every A,B ∈ P(X). Then, we have:

µ

(
n⋃

i=1

Ri

)
= ∑

J⊆{1,...,n},J ̸=∅
(−1)|J|+1

µ

(⋂
j∈J

Ri

)
. (1.6)
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Theorem 1.3.2. Let L be a finite lattice, f : L→ [0,1], and g, the Möbius transform of f . If f

is both monotone and weakly totally monotone, then g is a general mass function.

Proof. The proof is similar to the proof of Theorem 1.3.1. The differences are the following:

⊥ and⊤ are not in the signature of the lattice L, we do not require the lattice to be distributive,

and f is not required to be a belief function, therefore g is not necessarily a mass function.

Let a ∈ L. First, we show that g(a) ≥ 0. Notice that, since f (a) = ∑b≤a g(b), we

have g(a) = f (a)−∑b<a g(b). Let A = {x ∈ L | x < a}. Recall that A =
⋃

b<a ↓ b, where

↓ b = {x ∈ L | x≤ b}. Let µ : P(L)→ [0,1] be such that µ(A) := ∑x∈A g(x). Notice that µ is

additive. The following chain of equalities holds:

∑
b<a

g(b) = ∑
x∈A

g(x)

= µ(A) (definition of µ)

= ∑
J⊆A,J ̸=∅

(−1)|J|+1
µ

(⋂
b∈J

↓ b

)
(A =

⋃
b<a ↓ b and µ satisfies (1.6))

= ∑
J⊆A,J ̸=∅

(−1)|J|+1

(
∑

x∈
⋂

b∈J↓b
g(x)

)
(definition of µ)

= ∑
J⊆A,J ̸=∅

(−1)|J|+1

(
∑

x∈↓
∧
{x|x∈J}

g(x)

)
(↓a∩ ↓b =↓(a∧b))

= ∑
J⊆A,J ̸=∅

(−1)|J|+1 f

(∧
x∈J

x

)
(definition of f and ↓)

Notice that, if there is no element smaller than a, we have f (a) = g(a) and g(a)≥ 0 (because

f is positive). Otherwise, the following chain of inequalities follows from the equality above

and because f is monotone and weakly totally monotone.

f (a)≥ f (
∨
b<a

b)≥ ∑
J⊆A,J ̸=∅

(−1)|J|+1 f

(∧
x∈J

x

)
= ∑

b<a
m(b).

Therefore, g(a) = f (a)−∑b<a g(b)≥ 0 as required.

Since L is a finite lattice, it has a unique maximal element t. Since g is the Möbius

transform of f , we have ∑x∈L g(x) = ∑x≤t g(x) = f (t). Therefore, since g is non-negative,

0≤ ∑x∈L g(x)≤ 1 and g : L→ [0,1], that is, g is a general mass function as required.
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The next lemma follows from Theorems 1.3.1 and 1.3.2.

Lemma 1.3.4 (Mass function associated to a (general) belief function). Let L be a finite

lattice and bel : L→ [0,1] a general belief function. Then, there is a general mass function

mbel : L→ [0,1], called the mass function associated to bel, such that, for every x ∈ L,

bel(x) = ∑
y≤x

mbel(y). (1.7)

If bel is a belief function, then ∑
y∈L

mbel(y) = 1.

In the literature on belief functions, the Möbius transform of a belief function bel (i.e., g

from (1.1)) is denoted by mbel and called the mass function associated with bel. In our work,

we focus on (general) belief functions, therefore we always refer to the Möbius transforms of

a (general) belief functions as its (general) mass function.

Definition 1.3.5 ((General) plausibility functions). Let L be a lattice. pl : L→ [0,1] is called

a general plausibility function if the following conditions hold:

• pl is monotone with respect to L,

• for every k ≥ 1 and every a1, . . . ,ak ∈ L, it holds that

pl

( ∧
1≤i≤k

ai

)
≤ ∑

J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·pl

(∨
j∈J

a j

)
. (1.8)

Let L be a bounded lattice and pl a general plausibility function on L. pl is called plausibility

function if pl(⊥) = 0 and pl(⊤) = 1.

Lemma 1.3.5 (Mass function associated to a (general) plausibility function). Let L be a

De Morgan algebra, and pl : L→ [0,1] a general plausibility function. Then, the function

belpl : L→ [0,1] such that belpl(x) = 1−pl(¬x) is a general belief function. We denote

mpl the mass function associated to belpl and we call mpl the mass function associated to pl.

Then

pl(x) = 1− ∑
y≤¬x

mpl(y). (1.9)

Moreover, if pl is a plausibility function, then belpl is a belief function.
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Proof. Consider the function belpl(x) = 1− pl(¬x). Since 0 ≤ pl(¬x) ≤ 1, then 0 ≤

belpl(x) ≤ 1. Therefore, belpl is well-defined. Notice that, since ¬ is order-reversing

and pl is order-preserving, belpl is order-preserving. For every a1, . . . ,ak ∈ L, we have

pl

(
¬
∨

1≤i≤k

ai

)
= pl

( ∧
1≤i≤k

¬ai

)
(¬ is a De Morgan negation)

≤ ∑
J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·pl

(∨
j∈J

¬a j

)
(pl is a general plausibility function)

= ∑
J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·pl

(
¬
∧
j∈J

a j

)
(¬ is a De Morgan negation)

In addition, we have5

∑
J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1 = (−1) · ∑
J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J| = (−1) · ∑
1≤k≤n

(−1)k

n

k



= (−1) ·

 ∑
0≤k≤n

(−1)k

n

k

−1

 (since ∑0≤k≤n(−1)k

n

k

= 0)

= 1

5Recall that
(

n
k

)
denotes the binomial coefficient, that is, the number of ways to choose an (unordered)

subset of k elements from a fixed set of n elements.
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Therefore,

belpl

( ∨
1≤i≤k

ai

)
= 1−pl

(
¬
∨

1≤i≤k

ai

)

≥

 ∑
J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1

−
 ∑

J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·pl

(
¬
∧
j∈J

a j

)
= ∑

J ⊆ {1, . . . ,n}

J ̸=∅

(
(−1)|J|+1− (−1)|J|+1 ·pl

(
¬
∧
j∈J

a j

))

= ∑
J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1 ·

(
1−pl

(
¬
∧
j∈J

a j

))

= ∑
J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1 ·belpl

(∧
j∈J

a j

)
.

Therefore belpl is order-preserving and k-monotone for every k≥ 1. Hence, belpl is a general

belief function. In addition, if pl is a plausibility function, then bel(⊥) = 1−pl(⊤) = 0 and

bel(⊤) = 1−pl(⊥) = 1. Therefore, bel is a belief function. Let mpl be the mass function

associated to belpl, then we have pl(x) = 1−bel(¬x) = 1−∑y≤¬x mpl(y).

Lemma 1.3.6. Let L be a De Morgan algebra and bel : L→ [0,1] a general belief function.

Then, the function pl : L→ [0,1] such that pl(x) = 1− bel(¬x) is a general plausibility

function. If bel is a belief function, then pl is a plausibility function.

Proof. The proof is similar to the proof of lemma 1.3.5. We only detail the proof that pl

satisfies equation (1.8) for every k ≥ 1. Let a1, . . . ,ak ∈L . Recall that

bel

( ∨
1≤i≤n

ai

)
≥ ∑

J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1 ·bel

(∧
j∈J

a j

)
.
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Therefore, we have the following chain of inequalities.

bel

( ∨
1≤i≤n

¬ai

)
≥ ∑

J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1 ·bel

(∧
j∈J

¬a j

)

−bel

(
¬
∧

1≤i≤n

ai

)
≤− ∑

J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1 ·bel

(
¬
∨
j∈J

a j

)
.

Since, ¬ is a De Morgan negation and multiplication by (−1) reverses the inequality, we have

−bel

(
¬
∧

1≤i≤n

ai

)
≤ ∑

J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1 ·

(
−bel

(
¬
∨
j∈J

a j

))

pl

( ∧
1≤i≤n

ai

)
−1≤ ∑

J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1

(
pl

(∨
j∈J

a j

)
−1

)

(because −bel(¬x) = pl(x)−1)

pl

( ∧
1≤i≤n

ai

)
−1≤

 ∑
J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1 ·pl

(∨
j∈J

a j

)−
 ∑

J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1



pl

( ∧
1≤i≤n

ai

)
−1≤

 ∑
J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1 ·pl

(∨
j∈J

a j

)+

 ∑
J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|



pl

( ∧
1≤i≤n

ai

)
−1≤

 ∑
J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1 ·pl

(∨
j∈J

a j

)+

 ∑
1≤k≤n

(−1)k

n

k

 .
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Since, because ∑0≤k≤n(−1)k

n

k

= 0 = 1+∑1≤k≤n(−1)k

n

k

, we get

pl

( ∧
1≤i≤n

ai

)
−1≤

 ∑
J ⊆ {1, . . . ,n}

J ̸=∅

(−1)|J|+1 ·pl

(∨
j∈J

a j

)−1

pl

( ∧
1≤i≤k

ai

)
≤ ∑

J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·pl

(∨
j∈J

a j

)
,

as required.

The following lemma will be useful for the proof of theorem 3.4.1. Here BL is the

intersection of all Boolean algebras containing L:

Lemma 1.3.7. [Zho13, Lemma 3.7] Let L be a finite distributive lattice, and BL the Boolean

algebra generated by L. Any (general) belief function bel on L can be extended to a belief

function bel′ on BL in the sense that, for any x ∈ L, bel′(x) = bel(x).

Proof. If bel is a belief function, then we use [Zho13, Lemma 3.7]. Assume that bel is a

general belief function on a finite distributive lattice L = ⟨L,∨,∧⟩. We consider bel∗ the

extension of bel to the distributive lattice L∗ obtained by adding a top and a bottom element

to L. We define bel∗(⊥) = 0 and bel∗(⊤) = 1. This new lattice is again a finite distributive

lattice. By applying [Zho13, Lemma 3.7] to bel∗, we obtain a belief function bel′ on BL∗

such that bel′(x) = bel(x), for every x ∈ L.

1.4 Non-standard probabilities

Probability is the most traditional measure of uncertainty. It is usually introduced as a measure

on a Boolean algebra, but it can also be defined as a function on formulas of classical logic

satisfying the following axioms:

• p(⊤) = 1 (normalisation);
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• if ϕ ⊢CL ψ then p(ϕ)≤ p(ψ) (monotonicity);

• p(ϕ ∨ψ) = p(ϕ)+p(ψ) for ϕ ∧ψ =⊥ (additivity).

This definition is equivalent to introducing probability on the Lindenbaum algebra of the

classical propositional logic using Kolmogorov’s axioms. There are various attempts in the

literature to define probabilities on structures more general than Boolean algebras. The main

purpose of introducing probability measure over BD in [KMR21] was to enrich the framework

of Belnap–Dunn logic designed to be able to capture incomplete and/or inconsistent informa-

tion with an uncertainty measure. The framework is based on the notion of a probabilistic

BD model, which is a standard BD model (see Definition 1.2.1) equipped with a (classical)

probability measure on the set of states.

Definition 1.4.1 (Probabilistic BD models). A probabilistic Belnap–Dunn model is a tuple

M= ⟨W,µ,v+,v−⟩, such that ⟨W,v+,v−⟩ is a BD model and µ : P(W )→ [0,1] is a classical

probability measure.

Probabilistic models allow for lifting the (classical) probability measure on a set of states to

probability on formulas of BD logic via their extensions: p+µ (ϕ) = µ(|ϕ|+), p−µ (ϕ) = µ(|ϕ|−).

As p+µ and p−µ are related: p−µ (ϕ) = µ(|ϕ|−) = µ(|¬ϕ|+) = p+µ (¬ϕ), it is sufficient to work

only with p+µ , whence, the index can be omitted. It is shown in [KMR21, Lemma 1] that

the function pµ satisfies properties (i)–(iii) below. Moreover, for each function p on the

formulas of BD logic satisfying (i)–(iii) there is a probabilistic model ⟨W,µ,v+,v−⟩ such

that p(ϕ) = µ(|ϕ|)(see [KMR21, Theorem 4] . This allows us to take (i)–(iii) to be an

axiomatisation of probability functions over Belnap–Dunn logic, which are in [KMR21] called

non-standard probabilities.

Definition 1.4.2 (Non-standard probability). A map p : LBD→R is a non-standard probability

if it satisfies the following conditions:

(i) 0≤ p(ϕ)≤ 1 (normalisation);

(ii) if ϕ ⊢BD ψ , then p(ϕ)≤ p(ψ) (monotonicity);
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Figure 1.2: Belnap–Dunn square
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Figure 1.3: Continuous version of Belnap–
Dunn square

(iii) p(ϕ ∨ψ) = p(ϕ)+p(ψ)−p(ϕ ∧ψ) (inclusion/exclusion).

These axioms are weaker than Kolomogorovian ones, in particular, axiom (iii) can be

derived from Kolmogorovian axioms of additivity and normalization, but additivity is strictly

stronger and cannot be derived from (i)–(iii) 6. In addition, the resulting framework behaves

non-classically: as p(¬ϕ) ̸= 1−p(ϕ) in general, this account of probability admits positive

probability of classical contradictions and thus allows for a non-trivial treatment of classically

inconsistent information. When defined as above, the positive and negative probabilities are

mutually definable via negation as p−(ϕ) = p+(¬ϕ), and the probability of ϕ ∧¬ϕ might be

strictly bigger than zero – probabilistic information might be incomplete and/or inconsistent

analogously to the background system of BD logic. We can diagrammatically represent non-

standard probabilities on a continuous extension of Belnap-Dunn square (Figure 1.2), which

we can see as a product bilattice L[0,1]⊙L[0,1](Figure 1.3). In fact, we can see each point in the

square as an ordered couple representing positive and negative probabilistic support assigned

to a particular proposition. Some parts of the square suggest a natural intuitive interpretation.

For example, the point (0,0) corresponds to no information being provided (neither ϕ nor ¬ϕ

is supported by any state with positive measure in the underlying model), while (1,1) is the

point of maximally conflicting information (both ϕ and ¬ϕ are “certain” - supported by every

state with positive measure). The vertical line corresponds to ‘classical’ case in the sense that

positive and negative probability of a proposition sum up to 1. The left triangle represents the

area of incomplete information, while the right triangle the area of inconsistent information.
6Considering just the inequality p(ϕ ∨ψ) ≥ p(ϕ) + p(ψ)− p(ϕ ∧ψ) in place of A3, we obtain belief

functions on (finite) distributive lattices [Hal17; Zho13].
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The horizontal line encodes the situation when there is equal amount of positive and negative

support of the proposition, on the other words, situations where we have as much information

supporting ϕ as contradicting it.

Example 1.4.1 (Consulting a panel). The company assembles a panel to which they ask

whether a word describes the car well or not. That is, they ask how much they agree with the

statements: “the car has property ϕ (e.g. being a family car)?” and “the car does not have

property ϕ?” If humans were classical agents, every person would answer with a probability

p that belongs to the vertical line of the probabilistic extension of the Belnap-Dunn square.

However, experience has shown that often people don’t reason classically [ASV16]. When a

person answers (p+(ϕ),p−(ϕ)), if p+(ϕ)+p−(ϕ)> 1, then she is conflicted about whether

the property ϕ describes the car, if p+(ϕ)+p−(ϕ)< 1, then there might be some uncertainty

on how to judge whether the car has property ϕ .

In this manuscript, we do not differentiate between probabilities on BD formulas over a

given set of atomic formulas Prop and probabilities on the associated Lindenbaum algebra,

that is, on the free De Morgan algebra generated by Prop. The following Lemma ensures that

those two notions indeed coincide.

Lemma 1.4.1. There is a one-one correspondence between the functions on LBD satisfying

the properties (i) - (iii) of Definition 1.4.2 and the functions on the Lindenbaum algebra LBD

with the same properties.

Proof. First, we need to show that, if g is a function on LBD satisfying the properties

1. 0≤ g(ϕ)≤ 1 (normalisation)

2. if ϕ ⊢BD ψ , then g(ϕ)≤ g(ψ) (monotonicity),

3. g(ϕ ∨ψ) = g(ϕ)+g(ψ)−g(ϕ ∧ψ) (inclusion/exclusion),

then there is a corresponding function g′ on the Lindenbaum algebra LBD with the same

properties.

Let g : LBD→R. We define g′ :LBD→R as follows: g′([ϕ]) := g(ϕ) where [ϕ] represents

the equivalence class. Notice that the monotonicity of g implies that g(ϕ) = g(ψ) for any two
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equivalent formulas ϕ and ψ . Therefore, g′ is well-defined. g′ satisfies the three properties

above because: (i) 0 ≤ g′([ϕ]) ≤ 1 since 0 ≤ g(ϕ) ≤ 1; (ii) if [ϕ] ≤ [ψ], then ϕ ⊢BD ψ , so

g(ϕ)≤ g(ψ), hence g′([ϕ])≤ g′([ψ]); (iii) we have

g′([ϕ]∨ [ψ]) = g′([ϕ ∨ψ]) = g(ϕ ∨ψ) (by definition of g′)

= g(ϕ)+g(ψ)−g(ϕ ∧ψ) (by assumption)

= g′([ϕ])+g′([ψ])−g′([ϕ ∧ψ]) (by definition of g′)

= g′([ϕ])+g′([ψ])−g′([ϕ]∧ [ψ])

The proof of the converse is similar.

The following theorem [KMR21, Theorem 4] shows that the axioms of non-standard

probability are complete with respect to probabilistic BD models.

Theorem 1.4.1 (Completeness of non-standard probabilities). Let Prop be a finite set of

variables, and p a function satisfying the axioms in Definition 1.4.2. There is a probabilistic

model M= ⟨W,µ,v+,v−⟩, such that p= pµ in the sense that p(ϕ) = µ(|ϕ|+).

1.5 Related works

In the remaining of the thesis we build on the definitions and results presented here to

develop a formal framework to reason with incomplete and contradictory evidence. We use

Belnap–Dunn logic as our logic to model the evidence available and Łukasiewicz logic to

formalise reasoning with probabilities. After [KMR21] developed a theory of probabilities

over Belnap–Dunn logic, we study generalising this theory to belief functions. The theory

of belief functions was first developed over Boolean algebras [Sha76; Dem67]. Recently,

many results have been proposed on belief functions over non-Boolean structures. The first

investigation on general lattices was started by [Bar00]. Then Grabich in [Gra09], investigates

the other aspects of belief functions and Dempster’s combination rule on general lattices

and De Morgan algebras instead of Boolean algebras. Then Zhou in [Zho13; Zho16], tries

to develop more aspects of Dempster-Shafer theory on dealt with belief functions on two

33



particular classes of distributive lattices: bilattices and de Morgan lattices, which are actually

mathematical objects in reasoning under incomplete and inconsistent information. He does

his investigation based on the Birkhoff’s representation theorem and then as an application

he studies Dempster-Shafer theory on non-classical formalisms, such as BD-logic. There are

other works in the literature, such as [BC16; CD19], in which they integrate belief functions

and non-classical formalisms, to be able to take care of the limitation of the information,

using belief functions and to take care of the imprecision, uncertainty or inconsistency in the

knowledge-base due to imperfect data thanks to the non-classical formalisms. In addition,

Frittella et al, in [Fri+20a] using the formal concept analysis, study belief function on finite

lattices. We complement this related works section by stating them in each related section

which are as follows: Sections 2.3, 3.1, 3.3.2, 4.1 and 4.4.

The reader can notice that we proved some lemmas in the preliminaries about the behaviour

of belief and plausibility functions over De Morgan algebras. Those results might be folklore,

but we could not find their mention in the literature. In what follows, we study the mathematical

properties of belief and plausibility functions within the framework of Belnap–Dunn logic,

and we discuss their interpretation in depth.
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CHAPTER

2
Reasoning with

inconsistent information

This is the very first step of the research in which we tried to propose a finer analysis of how

belief can be based on information, where the confirmation comes from multiple possibly

conflicting sources and is of a probabilistic nature. We use Belnap-Dunn logic and its

probabilistic extensions to account for potentially contradictory information on which belief is

grounded. We combine it with an extension of Łukasiewicz logic, or a bilattice logic, within a

two-layer modal logical framework to account for belief. There we proposed two-layer modal

logics of belief of a single agent, belief that is grounded on probabilistic information provided

(positive and negative information independently) by multiple sources. The underlying logic

of facts or events is chosen to be BD, the upper logic varies between BD and logics derived

from Łukasiewicz logic and based on product or bilattice algebras, to systematically account

for positive and negative information independently (and thus incompleteness and conflict) on

both levels.

Structure of the chapter This chapter consists of three sections. In section 2.1, we give

two examples to motivate our work and discuss some aggregation methods that we can use in

our framework. Then in Section 2.2, we formalise the framework using a two-layered logic.



In Section 2.3, we give the conclusion and a link to the other chapters.

2.1 Case studies

Here we give some motivational examples for the project. In many scenarios we can adapt

aggregation strategies that have been introduced on classical probabilities: a company that has

access to a huge amount of heterogeneous data from various sources and uses software capable

of analyzing these data. In this case it makes sense to consider aggregation methods that

require a substantial computational power. A natural strategy here is to evaluate sources with

respect to their reliability and aggregate them by taking their weighted average. Another kind

of agent is an investigator of a criminal case who builds her opinion on the guilt of a suspect

based on different pieces of evidence. We assume that all the sources are equally reliable and

the investigator is very cautious and does not want to draw conclusions hastily. Hence, she

relies on statements as little as all her sources agree on them, and the aggregation she uses

returns the minimum of the positive and the minimum of the negative probabilities provided

by the sources. If on the other hand the investigator considers all the sources being perfectly

reliable, she accepts every piece of evidence and builds her belief using the aggregation

maximazing both probabilities. We look at an agent who considers a set of issues, has access

to (multiple) sources providing positive and negative information on the issues in form of

non-standard probabilities, and builds beliefs based on information aggregated from these

sources. From plethora of possible scenarios we single out two case studies that we use to

illustrate the different concepts at stake.

Example 2.1.1 (Aggregating heterogeneous data). A company launching a new car model

needs to decide its selling price and its advertising strategy. Hence, its data analysts must

study the reports on the sells of the previous products launched by the company and the success

or failure of the advertisement campaigns. This study relies on factual information such as

“during the year 2015, the company sold n items of product Y ”, but also on statement based on

statistical analyses such as “the advertisement broadcasted in June 2016 increased the sells of

product Y among the 20-30 years old of 30%”. The second statement is based on aggregated
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information about the buyers that might be partial and partly false. Plus, the company has

access to statistical studies about the population on increase or decrease in expenses for cars.

Example 2.1.2 (How to lead an investigation). An investigator needs to know if one of the

suspects was present at the crime scene. She collects information from various sources:

CCTV camera recordings, ATM logs, witnesses’ statements, etc. No information of this kind

is absolutely precise, and typically different sources of information contradict each other.

Sources provide information of a probabilistic nature: camera recordings are imprecise due to

light conditions, witnesses are not absolutely sure what they have seen. Moreover, the pieces

of evidence confirming investigator’s hypothesis that the suspect was present at the place of

crime (that is, the positive information) are different from, and somewhat independent of, those

rejecting it (that is, the negative information): there is a CCTV camera closed to the crime

scene vs. ATM in a supermarket in a different city. For example, a lack of evidence supporting

the suspect was present at the crime scene does not yield a proof she was not there. In the end,

the investigator has to aggregate the available information and form beliefs about what likely

happened.

In many scenarios we can adapt aggregation strategies that have been introduced on classi-

cal probabilities. For instance, a company that has access to a huge amount of heterogeneous

data from various sources and uses software capable of analyzing these data. In this case it

makes sense to consider aggregation methods that require a substantial computational power.

A natural strategy here is to evaluate sources with respect to their reliability and aggregate

them by taking their weighted average. Another kind of agent is an investigator of a criminal

case who builds her opinion on the guilt of a suspect based on different pieces of evidence.

We assume that all the sources are equally reliable and the investigator is very cautious and

does not want to draw conclusions hastily. Hence, she relies on statements as little as all her

sources agree on them, and the aggregation she uses returns the minimum of the positive

and the minimum of the negative probabilities provided by the sources. If on the other hand

the investigator considers all the sources being perfectly reliable, she accepts every piece

of evidence and builds her belief using the aggregation maximazing both probabilities. In

what follows, we will propose two-layer modal logics of belief of a single agent, belief that
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is grounded on probabilistic information provided (positive and negative information inde-

pendently) by multiple sources. The underlying logic of facts or events is chosen to be BD,

the upper logic varies between BD and logics derived from Łukasiewicz logic and based on

product or bilattice algebras, to systematically account for positive and negative information

independently (and thus incompleteness and conflict) on both levels.

Aggregating probabilities

We model an agent that considers a set of topics listed by the atomic variables in Prop, has

access to sources giving information within the framework of non-standard probabilities

(which we will call simply probabilities) and builds beliefs based on these sources using a

so-called aggregation strategy. We focus on cases where the agent has no prior beliefs about

the topics at stake. Depending on the context, the aggregation strategy should satisfy different

properties.

A source s is a probability assignment over the set of formulas s : LBD→ [0,1]× [0,1].

In particular, we will later identify a source with a mass function on the BD states of a double-

valuation model. An aggregation strategy Agg is a function that takes in input a set of sources

S= {si}i∈I and returns a map AggS : LBD→ [0,1]× [0,1]. For every ϕ ∈LBD, we denote

AggS(ϕ)
+ (resp. AggS(ϕ)

−) the positive (resp. negative) support assigned to ϕ .

Agg is monotone if ϕ ⊢ ψ implies AggS(ϕ)≤ AggS(ψ) for all ϕ,ψ ∈LBD and for every

S. Agg is ¬-compatible if AggS(ϕ)
− = AggS(¬ϕ)+ for every ϕ ∈LBD and for every S. Agg

preserves probabilities if AggS is a probability for every S.

Many aggregation strategies have been introduced on classical probabilities. Some of them,

such as the (weighted) average, straightforwardly generalize to non-standard probabilities. In

the following, we present aggregation strategies for our two case studies.

Weighted average. In Example 2.1.1, a company has access to a huge amount of heteroge-

neous data from various sources and to softwares to analyse these data. A natural proposal is

to grade every source si with respect to its reliability wi and to take the weighted average of

the probabilities. The aggregation is then the map WA : LBD→ [0,1]× [0,1] such that, for
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every ϕ ∈LBD,

WA+(ϕ) :=
∑1≤i≤n wi ·p+i (ϕ)

∑1≤i≤n wi
and WA−(ϕ) :=

∑1≤i≤n wi ·p−i (ϕ)
∑1≤i≤n wi

.

One can easily prove that WA preserves probabilities, it is monotone, and ¬-compatible. This

aggregation strategy is however not feasible when modelling human reasoning.

A very cautious investigator. In Example 2.1.2, an investigator builds her opinion on the

suspect based on different sources. We assume all the sources are equally reliable and the

investigator does not want to draw conclusions hastily. Hence, she relies only on statements all

her sources agree on. The aggregation is then the map Min : LBD→ [0,1]× [0,1] such that

Min(ϕ) :=⊓1≤i≤n pi(ϕ) =

(
min

1≤i≤n
p+i (ϕ), min

1≤i≤n
p−i (ϕ)

)
.

Reasoning with trusted sources. Staying in Example 2.1.2, we now assume all the sources

are perfectly reliable. Hence, the investigator builds her belief on every statement supported

by at least one source. The aggregation is then the map Max : LBD→ [0,1]× [0,1] such that

Max(ϕ) :=⊔1≤i≤n pi(ϕ) =

(
max

1≤i≤n
p+i (ϕ), max

1≤i≤n
p−i (ϕ)

)
.

Here, one has high chances of reaching contradiction. In a scientific analyses, if one gets

experiments or information that is contradictory, there are two options. Either the information

is incorrect or there is a mistake in the interpretation of the data. Here, if the sources are 100%

reliable, reaching a contradiction state will simply indicate to our investigator that there is a

flaw in her analysis of the problem and she needs to change perspective to resolve the conflict.

The two latter aggregation strategies are monotone and ¬-compatible, and they in general

do not preserve probabilities.

2.2 Two-layer logics

To make a clear distinction between the level of events or facts, information on which the

agent bases her beliefs, and the level of reasoning about her beliefs, we use a two-layer logical

39



framework. The formalism originated with [FHM90; Háj98], and was further developed

in [CN14; BCN20b] into an abstract algebraic framework with a general theory of syntax,

semantics and completeness (we will employ this framework to derive completeness of the

logics we define).

Syntax ⟨Le,M ,Lu⟩ of a two layer logic L consists of a lower language Le of events or

facts (we denote formulas of Le by ϕ,ψ, . . .), an upper language Lu (we denote formulas of

Lu by α,β , . . .), and a set of unary modalities M which can only be applied to a non-modal

formula of Le, forming a modal atomic formula of Lu (in particular, no nesting of modalities

can occur).

Semantics of a two layer logic L is, in the abstract approach of [CN14], based on frames

of the form F = ⟨W,E,U,⟨µ♡⟩♡∈M ⟩, where W is a set of states, E is a local algebra of

evaluation of the lower language Le within the states1, U is an upper-level algebra interpreting

the modal formulas, and for each modality its semantics is given by a map µ♡ : ∏s∈W E→U ,

returning a value in the upper-level algebra for a tuple of values from the lower algebra

(assigned to an argument formula within the states). We write algebras, but often we need to

use matrices to evaluate formulas, i.e. algebras with a set of designated values. Such a frame

is called E-based and U-measured. A model is a frame equipped with valuations of Le in E

(the values of atomic modal formulas are then computed by µ , and values of modal formulas

are computed in U in an expected way). A non-modal formula ϕ is valid in a model iff it is

assigned a designated value in E by all the states, a modal formula α is valid in a model iff its

value is designated in U . A consequence relation is defined via preserving validity in every

model. It is of the sorted form Ψ,Γ ⊨ ξ where Ψ⊆Le,Γ⊆Lu,ξ ∈Le∪Lu.

The resulting logic as an axiomatic system L = ⟨Le,M,Lu⟩ consists of an axiomatics of

the lower logic Le, modal rules (i.e. rules with non-modal premises and modal conclusion)

and modal axioms (modal rules with zero premises) M, and an axiomatics of the upper logic

Lu. Proofs can be defined in the expected way. We can see that Ψ,Γ ⊢ ϕ iff Ψ ⊢Le ϕ , and

Ψ,Γ ⊢ α iff ΨMR,Γ ⊢Lu α , where ΨMR consists of conclusions of modal rules whose premises

are derivable from Ψ in Le (for more detail see [BCN20b, Proposition 3]).

1For this paper, we always consider the lower algebras be the same for all states. But different algebras can
be later used when modelling heterogeneous information.
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2.2.1 Logic of probabilistic belief

In scenarios like that of Example 2.1.1, it is reasonable to represent agents beliefs as proba-

bilities. In such two-layer logics, the bottom layer is that of events or facts, represented by

BD-information states. A source provides probabilistic information given as a mass function

on the states, multiple sources are to be aggregated with an aggregation strategy preserving

probabilities. The modality is that of probabilistic belief. For the upper-layer – the logic of

thus formed beliefs – we propose two logics derived from Łukasiewicz logic. The main reason

to choose Łukasiewicz logic as a starting point is that it can express the probability axioms,

and contains a well-behaved (continuous) implication. We however also aim at a formalism

that allows us to separate the positive and negative dimensions of information or support also

on the level of beliefs (just like BD does on the lower level). This motivates the use of product

or bilattice algebras (those of Examples 1.1.3 and 1.1.4) on the upper level.

I. An extension of Łukasiewicz logic with bilattice negation. Consider the product of the stan-

dard algebra of Łukasiewicz logic [0,1]Ł = ([0,1],∧,∨,&Ł,→Ł) with the algebra [0,1]op
Ł =

([0,1]op,∨,∧,⊕Ł,⊖Ł), as introduced in Example 1.1.3(3.), with only (1,0) as the designated

value. The logic of this product algebra (understood as the set of theorems - formulas always

evaluated at (1,0) - or as a consequence relation preserving the value (1,0)) is Łukasiewicz

logic Ł. It can be axiomatized in the (complete) language {→,∼} by axioms of weakening,

suffixing, commutativity of disjunction, and contraposition, and the rule of Modus Ponens

(see the axioms below). To be able to operate the pairs of values as a positive and nega-

tive support of formulas, we extend the signature of the algebra with the bilattice negation

¬(a1,a2) = (a2,a1), and extend the language to {→,∼,¬} (notice in particular, that ⊕ and ⊖

can be defined as in Example 1.1.3). We obtain the following axioms and rules, and denote
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the resulting consequence relation ⊢Ł(¬):

α → (β → α) ¬¬α ↔ α

(α → β )→ ((β → γ)→ (α → γ)) ¬∼α ↔∼¬α

((α → β )→ β )→ ((β → α)→ α) (∼¬α →∼¬β )↔∼¬(α → β )

(∼β →∼α)→ (α → β ) α,α → β/β α/∼¬α

The ¬ negations can be pushed to the atomic formulas, and we can thus consider formulas

up to provable equivalence in a negation normal form (nnf), i.e. formulas built using {→,∼}

from literals of the form p,¬p. It is easy to see, because we have ¬∼α ↔ ∼¬α and

¬(α → β )↔ ∼∼¬(α → β )↔ ∼(∼¬α → ∼¬β ) provable. A procedure can be defined

which turns each α into α¬ in nnf, so that we can prove, by induction, that (∼α)¬↔∼α¬

and (α → β )¬↔∼(∼α¬→∼β¬). We denote ⊡Γ :=∼¬Γ∪Γ.

Lemma 2.2.1. For any finite set of formulas Γ,α in a nnf,

Γ ⊢Ł(¬) α iff for some finite ∆ : ⊡Γ,∆ ⊢Ł α,

where ∆ contains instances of ¬-axioms.

Proof. The right-left direction is almost trivial: Ł is a subsystem of Ł(¬), and all the axioms

in ∆ are provable in Ł(¬), and, thanks to the ∼¬-rule, Γ ⊢Ł(¬) ⊡γ for each γ ∈ Γ.

For the other direction, we proceed in a few steps. First, we denote by ⊢Ł(¬)− provability

in Ł(¬) without the ∼¬-rule. By routine induction on proofs (and using that ∼¬ distributes

from/to implications and negations), we can see that

Γ ⊢Ł(¬) α iff ⊡Γ ⊢Ł(¬)− α.

Then we can list all the instances of ¬-axioms in the proof in ∆, and obtain:

⊡Γ ⊢Ł(¬)− α iff ⊡Γ,∆ ⊢Ł α.

First, note that we can list in ∆ all instances of ¬-axioms for all subformulas of Γ,α as well

and still keep the Lemma valid. This will come handy in the following proof. Second, we

stress that in the final proof ⊡Γ,∆ ⊢Ł α in Ł, we still use language of Ł(¬), where formulas

starting with ¬ are seen from the point of view of Ł as atomic. □
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Lemma 2.2.1 provides a translation of provability in Ł(¬) to provability in Ł and allows

us to observe that the extension of Ł by ¬ is conservative. Now, using finite completeness of

Ł, we can see that Ł(¬) is finitely strongly complete w.r.t. [0,1]Ł× [0,1]op
Ł :

Lemma 2.2.2 (Finite strong standard completeness of Ł(¬)). For a finite set of formulas Γ,

Γ ⊢Ł(¬) α iff ∀e : L → [0,1]Ł× [0,1]op
Ł (e[Γ]⊆ {(1,0)}→ e(α) = (1,0)).

Proof. The left-right direction is soundness, and consists of checking that the axioms are valid

and the rules sound. We only do some cases:

First the ∼¬-rule: assume that e is given and e(α) = (1,0). Then e(∼¬α) =∼¬(1,0) =

∼(0,1) = (1,0).

Next, for any e, e(∼¬(α→ β ))=∼¬(e(α)→ e(β ))=∼¬(e(α)1→Ł e(β )1,∼Ł(e(β )2→Ł

e(α)2)) = ((e(β )2→Ł e(α)2),∼Ł(e(α)1→Ł e(β )1)),

and, e(∼¬α→∼¬β )=∼¬e(α)→∼¬e(β )= (∼Łe(α)2,∼Łe(α)1)→ (∼Łe(β )2,∼Łe(β )1)=

(∼Łe(α)2→Ł ∼Łe(β )2,e(α)1&Ł∼Łe(β )1) = ((e(β )2→Ł e(α)2),∼Ł(e(α)1→Ł e(β )1)).

Last, for any e, e(¬∼α) = ¬∼e(α) = (∼Łe(α)2,∼Łe(α)1) =∼¬e(α) = e(∼¬α).

For the other direction, let us assume that Γ ⊬Ł(¬) α . Then for some finite ∆ containing

instances of ¬-axioms (in particular those for subformulas of Γ,α), we have ⊡Γ,∆ ⊬Ł α.

Because Ł is finitely standard complete, there is an evaluation e : At→ [0,1]Ł sending all

formulas in ⊡Γ,∆ to 1, while e(α)< 1. Here, At contains literals from Γ,α of the form p,¬p,

and atoms and formulas of the form ¬δ from ⊡Γ,∆. We define e′ : Prop→ [0,1]Ł× [0,1]op
Ł

by e′(p) = (e(p),e(¬p)). We can then prove, by routine induction, that for each formula

e′(β ) = (e(β ),e(β¬)). We use the fact that e[∆] ⊆ {1}, and ∆ contains all instances of

¬-axioms for all subformulas of Γ,α .

We now immediately see that e′(α) < (1,0), because e(α) < 1. To prove that indeed

e′[Γ] ⊆ {(1,0)}, we use the fact that e[⊡Γ] ⊆ {1}: as for all γ ∈ Γ, e(∼¬γ) = 1, e(¬γ) =

e(γ¬) = 0. For the latter, we again need to use the fact that e[∆] ⊆ {1}, and ∆ contains all

instances of ¬-axioms for all subformulas of Γ, as they prove, by means of Ł, that ¬γ ↔ γ¬,

and e has to respect that. Now we conclude, that for all γ ∈ Γ, e′(γ) = (e(γ),e(γ¬)) = (1,0).

□
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We can now put together the two-layer syntax of the first two-layer logic to be

• Le = {∧,∨,¬} language of BD,

• M = {B} a belief modality,

• Lu = {→,∼,¬} language of Ł(¬).

The intended models can be described as follows: the lower layer is a double-valuation model

of BD (W,⊩+,⊩−) (a set of states W , and the two support relations, which in fact can be

seen as arising from an evaluation of formulas of BD locally in the states in the product

bilattice 2⊙ 2, which is isomorphic to 4, as noted in Subsection 1.2). A source is given

by a mass function on the states mi : W → [0,1], we assume there are n sources, and each

source comes with a weight wi ∈ [0,1]. For a non-modal formula ϕ ∈Le, we obtain the value

||Bϕ|| ∈ [0,1]Ł× [0,1]op
Ł as a pair of its positive and negative probabilities as follows. First,

for each source mi, we have (∑v⊩+ϕ mi(v),∑v⊩−ϕ mi(v)) = (p+i (ϕ),p
−
i (ϕ)). Now, applying the

weighted average aggregation strategy we obtain

||Bϕ||=
(

∑1≤i≤n wi ·p+i (ϕ)
∑1≤i≤n wi

,
∑1≤i≤n wi ·p−i (ϕ)

∑1≤i≤n wi

)
.

The modal part M of the two-layer logic consists of two axioms and a rule reflecting directly

the axioms of probabilities listed in Subsection 1.4:2

B(ϕ ∨ψ)↔ (Bϕ⊖B(ϕ ∧ψ))⊕Bψ B¬ϕ ↔¬Bϕ

ϕ ⊢BD ψ/ ⊢Ł(¬) Bϕ → Bψ

The resulting logic is (BD,M,Ł(¬)). As BD is locally finite and strongly complete w.r.t. 4,

and Ł(¬) is finitely strongly complete w.r.t. [0,1]Ł× [0,1]op
Ł , we can apply [CN14, Theorems

1 and 2] directly to obtain finite strong completeness (soundness of the modal axioms and

rules is easy to see). But first, we need to observe that the frames as we have described them

can be seen within the framework of [CN14]:

The frames, seen in the format of [CN14], are F = (W,4, [0,1]Ł× [0,1]op
Ł ,µB), formulas of

Le are evaluated locally in the states of W using 4, as in the four-valued models for BD (which

2Considering just the right-left implication in the first axiom, we can express belief functions.
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we can see as equivalent to the double-valuation models). The interpretation of modalities µB

is computed as follows. A source is given by a mass function on the states m : W → [0,1]. Each

source comes with a weight wi ∈ [0,1]. Given e ∈∏v∈W 4, we obtain, for each source mi, first

the following sums of weights over states: (∑ev∈{t,b}mi(v),∑ev∈{ f ,b}mi(v)) = (p+i (e),p
−
i (e)).

The assignment µB now computes the weighted average of those as follows:

µ
B(e) = WA(e) =

(
∑1≤i≤n wi ·p+i (e)

∑1≤i≤n wi
,
∑1≤i≤n wi ·p−i (e)

∑1≤i≤n wi

)
.

Thus, for a non-modal formula ϕ ∈Le, applying µB to the tuple of its values in the states

(which we denote by ||φ ||), we obtain the value of Bϕ as ||Bϕ|| ∈ [0,1]Ł× [0,1]op
Ł as a pair of

its positive and negative probabilities as follows: First, for each source we have3(
∑

v⊩+ϕ

mi(v), ∑
v⊩−ϕ

mi(v)

)
= (p+i (ϕ),p

−
i (ϕ)).

Now, applying the weighted average aggregation we obtain

||Bϕ||= µ
B(||φ ||) = WA(||φ ||) =

(
∑1≤i≤n wi ·p+i (ϕ)

∑1≤i≤n wi
,
∑1≤i≤n wi ·p−i (ϕ)

∑1≤i≤n wi

)
.

We can now conclude the completeness as follows:

Corollary 2.2.1. (BD,M,Ł(¬)) is finitely strongly complete w.r.t. 4 based, [0,1]Ł× [0,1]op
Ł -

measured frames validating M.

In such frames, µB interprets B as a probability: For a frame to validate the axioms in M

means they are sent to (1,0), by an evaluation in [0,1]Ł× [0,1]op
Ł induced by µB over the lower

state valuations (which determines values of modal atomic formulas). An equivalence α ↔ β

is evaluated at (1,0) iff the values of α and β are equal. B(ϕ)M = µB(ϕM) = (p+(ϕ),p−(ϕ)).

Therefore, the first two axioms say that

p+(ϕ ∨ψ) = (p+(ϕ)−p+(ϕ ∧ψ))+p+(ψ) and p+(¬ϕ) = ¬p−(ϕ)

p−(ϕ ∨ψ) = (p−(ϕ)−p−(ϕ ∧ψ))+p−(ψ) and p−(¬ϕ) = ¬p+(ϕ).

3The value of ϕ in v being among {t,b} means it is positively supported in v, i.e. v ⊩+ ϕ . Similarly { f ,b}
means negative support.
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Similarly, the fact that the frame validates the rule say that p+ (p−) are monotone (antitone)

w.r.t. ϕ ⊢BD ψ . Analogous observation holds for the case the upper logic is the bilattice one.

From [KMR21, Theorem 4], we know that it is the induced probability function of exactly

one mass function on the BD canonical model, which in fact yields completeness w.r.t. the

intended frames described above (with a single source).

II. A bilattice Łukasiewicz logic. Alternatively, if we wish to use full expressivity of a bilattice

language, we can take in the upper layer Lu = {∧,∨,⊓,⊔,⊂,¬,0} to be the language of the

product residuated bilattice [0,1]Ł⊙ [0,1]Ł = ([0,1]× [0,1],∧,∨,⊓,⊔,⊃,¬,(0,0)), defined

in the spirit of [JR12] in Example 1.1.4. We evaluate formulas of the upper logic in the matrix

([0,1]Ł⊙ [0,1]Ł,F) with F = {(1,a) | a ∈ [0,1]} as the designated values, so that we send 0

to (0,0). The constants and connectives ⊤,⊥,1,∗,→,∼,⊕,⊖ are definable as follows:

∼α := (α ⊃ 0)⊔¬(¬α ⊃ 0) ⊤ := 0⊃ 0 ⊥ := ¬⊤ 1 :=∼0

α → β := (α ⊃ β )∧ (¬β ⊃ ¬α) α⊕β := (∼α ⊃ β )⊔¬(∼¬α ⊃ ¬β )

α ∗β := ¬(β →¬α) α⊖β :=∼(α ⊃ β )⊔¬∼(¬α ⊃ ¬β )

For an evaluation e, it holds that e(α → β ) ∈ F iff e(α → β )≥t (1,1) iff e(α)≤t e(β ). The

upper logic Lu as a consequence relation is defined to be

Γ ⊨Ł⊙Ł α iff ∀e(e[Γ]⊆ F → e(α) ∈ F).

The intended frames now use [0,1]Ł⊙ [0,1]Ł as the upper algebra, otherwise semantics of

atomic modal formulas is computed (from multiple sources) as in the previous logic. We

also obtain literally the same modal axioms M as above. Only here, apart from a very

generic completeness w.r.t. 4 based frames, where the upper algebra is an algebra (in fact

the Lindenbaum-Tarski algebra) of the upper logic, we cannot provide a better insight at

the moment and leave axiomatization of Lu, and completeness w.r.t [0,1]Ł⊙ [0,1]Ł-measured

frames to further investigations (cf. footnote 3).
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2.2.2 Logic of monotone coherent belief

The simplest logic we propose to deal with scenarios like the one of Example 2.1.2 is of the

form (BD,M,BD). Both lower and upper languages are the language of BD, M consists of

a single belief modality B. The intended frames are based on double-valuation semantics of

BD as before, only now we evaluate formulas of the upper logic in the bilattice L[0,1]⊙L[0,1]

on Figure 1 (right). A source is given by a mass function on the states mi : W → [0,1], we

again assume there are n sources. For a non-modal formula ϕ , we obtain the value ||Bϕ|| ∈

L[0,1]⊙L[0,1] as follows. First, for each source mi, we have (∑v⊩+ϕ mi(v),∑v⊩−ϕ mi(v)) =

(p+i (ϕ),p
−
i (ϕ)). Now, applying the Min aggregation strategy we obtain

||Bϕ||=
(

min
1≤i≤n

p+i (ϕ), min
1≤i≤n

p−i (ϕ)

)
.

Similarly, we may use the Max aggregation strategy when reasoning with trusted sources. As

before, we can see the frames inside the framework of [CN14] to derive completeness: frames

are of the form F = (W,4,L[0,1]⊙L[0,1],µ
B) where µB : ∏v∈W 4→ L[0,1]⊙L[0,1] computes

the Min (Max) aggregation of the probabilities given by the individual sources. In general this

aggregation strategy does not yield a probability, but it is monotone and ¬-compatible. This

motivates considering logic (BD,M,BD), where the modal part M consists of the following

two axioms and a rule

B¬ϕ ⊣⊢BDu ¬Bϕ ϕ ⊢BDe ψ/Bϕ ⊢BDu Bψ .

As BD is strongly complete w.r.t. both 4 and L[0,1]⊙L[0,1]
4, we can apply [CN14, Theorem

1] to conclude that (BD,M,BD) is strongly complete w.r.t. 4-based L[0,1]⊙L[0,1]-measured

frames validating M. In such frames, µB interprets B as a monotone and ¬-compatible

assignment (not necessarily a probability). We cannot in general see it as coming from a

measure, or a set of measures5, on the lower states (to recover sources), and connect it with

the intended semantics.

4Because it has (2⊙2,{(1,0),(1,1)}) as a sub-matrix: the obvious embedding is a strict homomorphism of
de Morgan matrices - it preserves and reflects the filters.

5It is not hard to provide an example of such assignment which cannot be obtained by Min (Max) aggregation
of probabilities.
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One could however replace the upper language with the full bilattice language, consider

modalities indexed by sources, and express the Min (Max) aggregations explicitly using ⊓,⊔

connectives.

2.3 Conclusion

We have proposed two-layer logics of belief based on potentially inconsistent probabilistic

information coming from multiple sources. The framework keeps positive and negative aspect

of information (support, evidence, belief) separate, though inter-linked, in both layers of the

semantics, and thus allows for reasoning with inconsistencies, in contrast to getting rid of them.

Doing so, we believe we have laid groundwork to a modular framework to model reasoning

with inconsistent probabilistic information.

We see our contribution in the following: to see how Belnap-Dunn’s logic BD (on the

lower layer, and behind the non-standard probabilities) can be combined with many-valued

reasoning on the upper layer provides a novel example of two-layer logics for reasoning under

uncertainty. The only examples considered so far used either classical logic [FHM90], or

quantitative reasoning in form of linear inequalities on the upper layer [Zho13]. The logic

Ł(¬), extending Łukasiewicz logic with bi-lattice negation, we introduced in Subsection 2.2.1

and proved its finite strong standard completeness, is to our best knowledge new and might be

of independent interest. (The same can be said about the bi-lattice Łukasiewicz logic, which

however remains to be axiomatized and its completeness studied.)

In the next chapter, we build on [Fri+20b] that generalises Dempster-Shafer theory [Sha76]

to finite lattices, to adapt the theory to the BD-based setting. This allows us to interpret

Dempster-Shafer theory over BD logic.

We also would like to look at further research directions. For instance, to cover cases when

a source does not give an opinion about each formula of the language, we need to account for

sources providing partial probability maps. Also cases where sources provide heterogeneous

information need to be included.

An important direction to move further is to capture dynamics of information and belief
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given by updates on the level of sources, and to generalize the framework to the multi agent

setting involving group modalities and dynamics of belief. Specifically, forming group belief,

like common and distributed belief, will involve communication and sharing or pooling of

sources. It might call for a use of various upper-layer languages, among those we see the

ones with additional (nestable) modalities inside the upper logic to account for reflected,

higher-order beliefs, in contrast to the beliefs grounded directly in the sources. In Chapter 4,

we make a first step in that direction by studying update of belief functions.
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CHAPTER

3
Belief functions over

Belnap–Dunn logic

3.1 Introduction to the chapter and related works

Many generalisations of traditional probability theory have been proposed via possibility

functions [DP07; Zad82], belief functions [Sha76; SK94], lower and upper probabilities

[Dem67; WF82], inner and outer measures [Hal50] credal sets [Lev83] and so on. Each

proposal trying to deal with the fact that either one cannot know the exact probability measure

describing the world, or this probability measure does not even exist. Most of these proposals

have been done within the framework of classical logic and classical reasoning. Here, we

aim at developing this very fruitful theory to the realm of non-classical logic. Some attempts

already exists by generalising probabilities and belief functions over distributive lattices.

The first investigation on general lattices was started by [Bar00]. Then Grabich in [Gra09],

investigates the other aspects of belief functions and Dempster’s combination rule on general

lattices and De Morgan algebras instead of Boolean algebras. Then Zhou in [Zho13; Zho16],

tries to develop more aspects of Dempster-Shafer theory on dealt with belief functions on two

particular classes of distributive lattices: bilattices and de Morgan lattices, which are actually

mathematical objects in reasoning under incomplete and inconsistent information. He does

his investigation based on the Birkhoff’s representation theorem and then as an application

he studies Dempster-Shafer theory on non-classical formalisms, such as BD-logic. There are



other works in the literature, such as [BC16; CD19], in which they integrate belief functions

and non-classical formalisms, to be able to take care of the limitation of the information,

using belief functions and to take care of the imprecision, uncertainty or inconsistency in the

knowledge-base due to imperfect data thanks to the non-classical formalisms. In addition,

Frittella et al, in [Fri+20a], using the formal concept analysis, study belief function on finite

lattices. As we said, belief functions and Dempster-Shafer’s combination rule on De Morgan

algebras, in [Zho13; Zho16; Gra09], so as a result on BD logic is already studied partially.

One of the things that we focus on is to study plausibility functions separately because it has a

different interpretation and behavior than the classical case. One of the aspects that we consider

is the interpretation and the behaviour of belief, plausibility functions and the Dempster Shafer

Combination rule on BD logic. Also the framework that we present is independent from the

algebraic structure. In the sense that, this model always gives us two beliefs (plausibility or

whatever), one defined over the set of states which behaves totally classic and the other one

which is defined over the lindenbaum algebra and because of the presence of the negation is

not well-behaved. We always can apply the existing classical results on our model based using

the first ones.

Structure of the Chapter: In this chapter, we focus generalising the theory of belief

functions within the framework of Belnap–Dunn logic. We build on the theory of non-standard

probabilities over Belnap–Dunn logic [KMR21] presented in Section 1.4. In Section 3.2,

we present the proof of [KMR21, Theorem 4] where the authors introduce the canonical

models for probabilistic BD logic. In Section 3.3, we discuss the interpretation of belief

and mass functions in the context of evidence-based reasoning and present Dempster–Shafer

combination rule. We show a well-known example in which it gives counterintuitive results

within the framework of classical logic, and we discuss the added value of reasoning with

belief functions within the framework of Belnap Dunn logic. In Section 3.4, we introduce DS

models to interpret belief and plausibility on formulas of BD logic. Then, we present different

interpretations of belief and plausibility that lead to different generalisations of the classical

definition. In Section 3.5, we discuss some results building on this work.
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3.2 Preliminaries on non-standard probabilities

As we mentioned before in Theorem 1.4.1, the axioms of non-standard probability are complete

with respect to probabilistic BD models, that is, for a p a function satisfying the axioms in

Definition 1.4.2. There is a probabilistic model M = ⟨W,µ,v+,v−⟩, such that p = pµ in

the sense that p(ϕ) = µ(|ϕ|+). Here we need to explain and reprove this theorem in our

ways. The construction of a canonical model used in the proof of this theorem uses the

fact we previously mentioned that each formula of BD logic can be uniquely represented in

irredundant disjunctive normal form (iDNF) (see Section 1.2 ). There is a straightforward

correspondence between BD formulas in iDNF and sets of sets of literals:1

ϕ =
∨

i

∧
j

li
j→{{l1

1 , . . . , l
1
n1
}, . . . ,{lm

1 , . . . , l
m
nm
}}, li

j ∈ Lit

In other words, each formula corresponds to a disjunction of a family of sets of literals

interpreted conjunctively.

Definition 3.2.1 (Canonical model). The canonical BD model is a tuple Mc = ⟨Sc,v+c ,v
−
c ⟩,

where Sc = P(Lit) and the valuations v+c ,v
−
c : Prop→ P(Sc) = P(P(Lit)) are defined as

v+c (p) = {s | p ∈ s}, v−c (p) = {s | ¬p ∈ s} which are uppersets in the poset ⟨P(Lit),⊆⟩.

Proof of Theorem 1.4.1. Consider the canonical model Mc = ⟨P(Lit),v+c ,v−c ⟩ introduced

above. Notice that, for every p∈ Prop, v+c (p) and v−c (p) are uppersets2 in the poset ⟨P(Lit),⊆⟩.

The positive extension of a formula ϕ in iDNF, ϕ =
∨n

i=1 γi for some conjunctions of literals

γi is the set |ϕ|+ = {s | s |= ϕ}= {s | s⊇ Lit(γi) for some i,1≤ i≤ n}. Thus, extensions of

formulas are uppersets in the poset ⟨P(Lit),⊆⟩, the sets of literals γi generate the upperset

|ϕ|+ and in fact they are the minimal set of its generators. This correspondence is one-to-one

between formulas in disjunctive normal forms and uppersets in the Boolean algebra P(Lit):

each extension is an upperset, and each upperset (other than ∅ and P(Lit))3 is a positive

extension (of the formula given in iDNF using the finite antichain of the generators of the

1This correspondence is not one to one, as some of the sets correspond to a formula in DNF, but not in iDNF.
2Indeed, for every s,s′ ∈ P(Lit), if s |=+ p and s⊆ s′, then s′ |=+ p.
3Notice that ∅ and P(Lit) are the extensions of ⊥ and ⊤.
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upperset). Moreover, the mapping ϕ 7→ |ϕ|+ is an isomorphism of both structures understood

as distributive lattices (|ϕ ∨ψ|+ = |ϕ|+∪ |ψ|+ and |ϕ ∧ψ|+ = |ϕ|+∩ |ψ|+), hence a non-

standard probability function p on formulas defines a non-standard probability function p′ on

uppersets (other than ∅ and P(Lit)) as p′(|ϕ|+) = p(ϕ). We can extend p′ to ∅ and P(Lit)

in the obvious way: p′(∅) = 0 and p′(P(Lit)) = 1 and we obtain what is in [Zho13] called

probability function on a distributive lattice. Then we use Lemma 3.5 in [Zho13], which says

that a probability function on a distributive lattice L can be uniquely extended to a probability

function on the Boolean algebra BL generated by the lattice L.

Let us note that in [KMR21] an alternative proof is provided. It uses the fact that the

required probability measure µ on the canonical model is generated by its values on singletons

{s},s ∈ P(Lit). As sets of literals are ordered by inclusion with the maximal element being

the set corresponding to the conjunction of all the literals, we can define the measure on

singletons inductively. We start with the conjunctive clause γmax =
∧

l∈Lit
l,Lit= {1, . . . ,n} and

assign µ({l | l ∈ Lit}) = p(γmax). In the induction step for s = {l1, . . . , lk},k ≤ n, we define

µ({s}) = p(
∧

i=1...k
li)− ∑

s⊂s′
µ({s′}).

3.3 Evidential reasoning via mass functions on algebras

The classical treatment of probability has two distinctive traits. First, the probability is assumed

to be ‘compositional’, in the sense the probability measure of any given event is uniquely

determined by the probabilities of elementary events. Second, and related to the first, is that

probabilities of all events are assumed to be known (or at least, knowable). Formally, these

assumptions lead to sample spaces being Boolean algebras.

It may be reasonably argued that these assumptions are too optimistic and do not correspond

to the situations one encounters in practice. Indeed, given the probability assignments of some

elementary events a1, . . . , am, one may not be able to infer probabilities of their combinations

if said assignments were obtained by different methods (i.e., the data were heterogeneous).

On a related note, it is not necessarily the case that the probability of all elementary events is

known even if one somehow obtained an assignment for a complex event composed of those.
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Taking that into account, one can generalize the classical approach to probability in two

(compatible) ways. First, given a Boolean algebra B, one can define the probability assignment

on its proper subalgebra B′. The values of the events in B\B′ can be then approximated via

more general uncertainty measures, e.g., belief and plausibility functions or inner and outer

measures. The other approach is to represent the sample space not as a Boolean algebra but in

the form of another, more general structure.

Belief and plausibility functions Belief functions were introduced in [Sha76] as a generali-

sation of probabilities for the case where the exact compositional uncertainty measures are not

given to the entire sample space of events. Originally, they were defined on Boolean algebras,

however, later work [Bar00; Gra09; Zho13; Fri+20a] saw them further expanded on arbitrary

and distributive lattices. In this section, we will use a combination of the two approaches given

above and consider belief (and their dual counterparts, plausibility functions) on De Morgan

algebras of which Boolean algebras are a particular case and which themselves are a special

case of distributive lattices equipped with negation.

In the standard approach both belief and plausibility use in fact the same information rep-

resented by the mass function, but deal with it in a different way. While we can see belief

as the amount of information which directly supports the statement in question, plausibility

represents the amount of information which does not contradict the statement. As Halpern says:

“Plausm(U) can be thought of as the sum of the probabilities of the evidence that is compatible

with the actual world being in U .” ([Hal17], p. 38). This idea is captured in the definition of

plausibility via mass function: pl(A) = ∑
A∩B ̸=∅

m(B). Alternatively, we can understand plausi-

bility as a measure of the information, which does not support the negation of the hypothesis:

pl(A) = 1−bel(Ac) = ∑
B̸⊆Ac

m(B). We can also see belief and plausibility as approximations,

as a lower and an upper bound for the ‘true’ probability: bel(A)≤ p(A)≤ pl(A). While in

the classical case all these readings coincide, in the case of BD logic they do not, which gives

us several possibilities of defining belief/plausibility pairs.

Dempster–Shafer combination rule on powerset algebras Dempster–Shafer theory [Dem68;

Sha76] is a formal framework for decision-making under uncertainty in situations in which
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some propositions cannot be assigned probabilities. The core proposal of Dempster–Shafer

theory is that, in such cases, the missing value can be replaced by a range of values, the lower

and upper bounds of which are assigned by belief and plausibility functions. In fact, the

correspondence between belief functions and mass functions is used to formalise probabilistic

reasoning based on pieces of evidence. A mass function is assigned to each piece of evidence

to encode the information contained in the evidence. For instance, if an expert states that they

are 70% certain that p∨q is true and that they do not give more information, one would assign

the following mass function to this piece of evidence: m(p∨q) = 0.7 and m(⊤) = 0.3. Here,

the remaining mass is assigned to ⊤, because it represents the non-informative statement. In

the classical case, mass functions, belief functions and plausibility functions are connected via

the following interpretation. While mass function represents the amount of evidence commit-

ted exactly to a particular statement, we can see belief as collecting information which directly

supports the statement in question, while plausibility represents the amount of information

which does not contradict the statement. Belief (resp., plausibility) is given by the sum of

masses of the propositions implying (resp., not contradicting) it. One can already observe

that belief and plausibility are connected via the negation and the notion of contradiction.

Therefore, shifting from classical logic to BD logic will impact the definition of plausibility

and the connection between belief and plausibility. In fact, this will open the door to many

alternative definitions of plausibility.

Since, a priori, a mass function is assigned to each piece of evidence, the natural next

step is to define a way to combine the information obtained from each piece of evidence. In

what follows, we discuss Dempster–Shafer combination rule and its interpretation on powerset

algebras. Then, we motivate interpreting it on De Morgan algebras to model more accurately

and in a more informative manner situations in which one handles contradictory evidence.

Definition 3.3.1 (Dempster–Shafer combination rule over a powerset algebra). Let m1 and

m2 be two mass functions on a powerset algebra P(S). Dempster–Shafer combination rule
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computes their aggregation m1⊕2 (or m1⊕m2) as follows.

m1⊕2 : P(S)→ [0,1] (3.1)

X 7→


0 if X =∅

∑{m1(X1) ·m2(X2) | X1∩X2 = X}
∑{m1(X1) ·m2(X2) | X1∩X2 ̸=∅}

otherwise.

Example 3.3.1 (Two disagreeing experts. Classical reasoning). A patient is sick, and two

doctors are asked their opinions about which disease the patient has. Three diseases are being

considered: S = {a,b,c}. It is assumed that the experts are infallible, and that the patient

can have one and only one of the considered diseases. Therefore, the events a, b and c are

incompatible and exhaustive. Expert 1 thinks that the patient has disease a with certainty 0.9

and that it is very unlikely the patient has disease b, therefore assigning certainty 0.1 to that

option. Expert 2 thinks that the patient has disease c with certainty 0.9 and that it is very

unlikely the patient has disease b, therefore assigning certainty 0.1 to that option.

The opinion of expert 1 is described by the mass function m1 : P({a,b,c})→ [0,1] such that

m1({a}) = 0.9, m1({b}) = 0.1, and m1(x) = 0 otherwise. The opinion of expert 2 is described

by the mass function m2 : P({a,b,c})→ [0,1] such that m2({b}) = 0.1, m2({c}) = 0.9, and

m2(x) = 0 otherwise.

The aggregated mass function m1⊕2, using Dempster–Shafer combination rule, is as

follows:

m1⊕2(x) =

 1 if x = {b}

0 otherwise.

We get m1⊕2({a}) = 0 because for any two elements x,y ∈ P({a,b,c}) such that x∩ y = {a}

we have m1(x) ·m2(y) = 0. This result comes from the fact that Dempster–Shafer combination

rule simply gets rid of contradiction.

This conclusion makes sense given the hypothesis, however in a real life context it is

counter-intuitive, since the initial assumptions cannot be met. Indeed, it would be more

reasonable to conclude that there is 50%-50% that the patient has disease a and/or disease c

and that it is very unlikely that it is disease b, because both experts agree on that fact.

Notice that if one decides to assign a very small mass (e.g. 10−4) instead of 0 for m1({c})
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and m2({a}), one gets the following mass functions

m1 : P(S)→ [0,1] m2 : P(S)→ [0,1]

x 7→



0.89995 if x = {a}

0.09995 if x = {b}

0.0001 if x = {c}

0 otherwise.

x 7→



0.0001 if x = {a}

0.09995 if x = {b}

0.89995 if x = {c}

0 otherwise.

and the following aggregated mass function:4

m1⊕2(x) =



0.00885 if x = {a}

0.9823 if x = {b}

0.00885 if x = {c}

0 otherwise.

That is one still concludes that disease b is way more likely than disease a or c. Indeed, one

gets bel1⊕2(b) = 0.9823 and bel1⊕2({a,c}) = m1⊕2({a})+m1⊕2({c}) = 0.0177.

The example above shows how Dempster–Shafer combination rule can give counterin-

tuitive results when interpreted in a classical framework. In what follows we argue that

formalising this kind of situations within the framework of BD logic, that is, on De Morgan

algebra, will lead to more intuitive conclusions.

Dempster–Shafer combination rule on De Morgan algebras Recall that BD logic is the

logic of De Morgan algebras, therefore, in that framework, saying that a formula ϕ is true

means that “we have information supporting that fact that the statement ϕ is true”. Therefore,

a priori, no two formulas are contradictory. Indeed, one can have pieces of information

supporting contradictory statements. Therefore, if we consider De Morgan algebras, we get

the following adaptation of Dempster–Shafer combination rule.

Definition 3.3.2 (Dempster–Shafer combination rule over a De Morgan algebra). Let L be a

De Morgan algebra (without the constants ⊥ and ⊤ in the language). Let m1 and m2 be two

4Note that those are rounded numbers.
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general mass functions on L. Dempster–Shafer combination rule computes their aggregation

m1⊕2 as follows.

m1⊕2 : L→ [0,1] (3.2)

x 7→∑{m1(x1) ·m2(x2) | x1∧ x2 = x}.

Let L be a bounded De Morgan algebra (that is, with the constants ⊥ and ⊤ in the

language). Let m1 and m2 be two mass functions on L. Dempster–Shafer combination rule

computes their aggregation m1⊕2 as follows.

m1⊕2 : L→ [0,1] (3.3)

x 7→


0 if x =⊥
∑{m1(x1) ·m2(x2) | x1∧ x2 = x}
∑{m1(x1) ·m2(x2) | x1∧ x2 ̸=⊥}

otherwise.

Notice that in equation (3.2), there is no normalisation term. Indeed, here ∑x∈Lm1⊕2(x) =

∑{m1(x1) ·m2(x2) | x1,x2 ∈ L}. In addition, we have

∑
x∈L

m1⊕2(x) = ∑
x∈L

∑{m1(x1) ·m2(x2) | x1∧ x2 = x}

= ∑{m1(x1) ·m2(x2) | x1,x2 ∈ L}

= ∑
x1∈L

∑
x2∈L

m1(x1) ·m2(x2)

= ∑
x1∈L

m1(x1) · ∑
x2∈L

m2(x2).

Therefore, m1⊕2 is a general mass function, because 0≤ ∑
x1∈L

m1(x1)≤ 1 and 0≤ ∑
x2∈L

m2(x2)≤

1.

Lemma 3.3.1. In the case of Dempster–Shafer combination rule for bounded De Morgan

algebras, if we consider the free De Morgan algebra generated by a finite set of variables

Prop and constants {⊥,⊤}, then we have that for every x ∈ L,

m1⊕2(x) = ∑{m1(x1) ·m2(x2) | x1∧ x2 = x}. (3.4)
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Proof. In equation (3.3), notice that x1∧x2 =⊥ iff either x1 =⊥ or x2 =⊥. This implies that

∑{m1(x1) ·m2(x2) | x1∧ x2 ̸=⊥}

= ∑
x1∈L∖⊥

∑
x2∈L∖⊥

m1(x1) ·m2(x2)

= ∑
x1∈L

∑
x2∈L

m1(x1) ·m2(x2) (because m1(⊥) = m2(⊥) = 0)

= ∑
x1∈L

m1(x1) · ∑
x2∈L

m2(x2)

= ∑
x1∈L

m1(x1) (because ∑x2∈Lm2(x2) = 1)

= 1. (because ∑x1∈Lm1(x1) = 1)

Therefore, if x ̸= ⊥, we have m1⊕2(x) = ∑{m1(x1) · m2(x2) | x1 ∧ x2 = x}. If x = ⊥, then

∑{m1(x1) ·m2(x2) | x1∧ x2 = x}= 0, because either x1 =⊥ or x2 =⊥.

Remark 3.3.1. In Section 3.4, we introduce DS models (Definition 3.4.1) on which we define

belief functions over BD logic. Notice that we define bel+ and bel−, that generalise the

non-standard probabilities p+ and p−, on the Lindenbaum algebra associated to the model.

Therefore, we consider belief functions over free De Morgan algebras.

Example 3.3.2 (Two disagreeing experts. Reasoning with BD logic). We consider the previous

case study, but we consider the general mass functions over the free De Morgan algebra DM3

generated by {a,b,c}:

m1 : DM3→ [0,1] m2 : DM3→ [0,1]

x 7→


0.9 if x = a

0.1 if x = b

0 otherwise.

x 7→


0.9 if x = c

0.1 if x = b

0 otherwise.
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We get the following aggregated mass function

m1⊕2(x) =



0.81 if x = a∧ c

0.09 if x = a∧b or x = b∧ c

0.01 if x = b

0 otherwise.

Here, one still has m1⊕2(a) = m1⊕2(c) = 0, but m1⊕2(b) = 0.01 is now small. In addition

bel1⊕2(a) = m1⊕2(a)+m1⊕2(a∧b)+m1⊕2(a∧ c) = 0.9

is 4.7 times larger than

bel1⊕2(b) = m1⊕2(b)+m1⊕2(a∧b)+m1⊕2(b∧ c) = 0.19.

Here, the mass function m1⊕2 tells us that the evidence strongly supports the fact that the

patient has disease a and c, and that the evidence is less conclusive concerning disease b.

One could object that in the classical case, it is assumed that it is impossible for the

patient to have two diseases, in which case, one might want to formalise the example with the

following mass functions:

m1 : DM3→ [0,1] m2 : DM3→ [0,1]

x 7→


0.9 if x = a∧¬b∧¬c

0.1 if x = ¬a∧b∧¬c

0 otherwise.

x 7→


0.9 if x = ¬a∧¬b∧ c

0.1 if x = ¬a∧b∧¬c

0 otherwise.

This gives us the following aggregated mass function:

m1⊕2(x) =



0.81 if x = a∧¬a∧¬b∧ c∧¬c

0.09 if x = a∧¬a∧b∧¬b∧¬c or x = ¬a∧b∧¬b∧ c∧¬c

0.01 if x = ¬a∧b∧¬c

0 otherwise.

Here, the mass function highlights that (1) experts agree the patient does not have disease

b and (2) the agent has contradictory information which might lead to the conclusion that
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further investigation is necessary. Indeed, if one asks two equally qualified experts about their

opinions and if they contradict each other, it is only natural to consult more experts. In the

same time, we still have bel1⊕2(a) = bel1⊕2(c) = 0.9 and bel1⊕2(b) = 0.19.

This framework also has the advantages to allow us to formalise a situation in which both

experts did not consider the same set of eventualities. Assume that expert 1 simply did not

consider disease c as an option (because they forgot, because they are not aware of it, because

they could not test for it...) and expert 2 did not consider disease a as an option. Then the

initial mass functions become:

m1 : DM3→ [0,1] m2 : DM3→ [0,1]

x 7→


0.9 if x = a∧¬b

0.1 if x = ¬a∧b

0 otherwise.

x 7→


0.9 if x = ¬b∧ c

0.1 if x = b∧¬c

0 otherwise.

and we get the aggregated mass function

m1⊕2(x) =



0.81 if x = a∧¬b∧ c

0.09 if x = a∧b∧¬b∧¬c or x = ¬a∧b∧¬b∧ c

0.01 if x = ¬a∧b∧¬c

0 otherwise.

Here, the conclusion is that the patient is likely to have disease a and c.

In the following, we propose to reason with belief functions within the framework of

Belnap Dunn logic. Indeed, this counterintuitive result in the classical framework comes from

the fact that classical logic cannot talk about contradictory information. Here, we introduce a

slightly generalized notion of belief function that does not require belief of false and true to

be 0 and 1. Indeed, within the framework of Belnap Dunn logic, we usually do not have the

constant symbols to talk about the false ⊥ and true ⊤.

Remark 3.3.2. Notice that many alternatives to Dempster–Shafer combination rule have

been proposed. For instance, Dubois and Prade [DP88] have proposed a “hybrid” rule

intermediate between the conjunctive and disjunctive sums, in which the product m1(B) ·m2(C)
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is assigned to B∩C whenever B∩C ̸=∅, and to B∪C otherwise. This rule is not associative,

but it usually provides a good summary of partially conflicting items of evidence. This rule

deals with contradictory evidence by stating that at least one of the two options supported by

the two pieces of evidence must be true, while Dempster–Shafer combination rule disregards

the two pieces of evidence. In our generalisation of Dempster–Shafer combination rule

(Definition 3.3.2), we end up keeping track of the contradictions and where they come from.

However, notice that if we work on an arbitrary bounded De Morgan algebra, we could still

have cases where x∧ y = ⊥ even though neither x = ⊥ nor y = ⊥. This would happen if,

even though the agent is tolerant to contradiction, they consider that it is impossible to get

information that x and y are both true. Therefore, in this situation it could make sense to use

the combination rule proposed by Dubois and Prade, but on a De Morgan algebra rather than

on a powerset algebra:

m1⊕2(x) =∑{m1(x1) ·m2(x2) | x1∧ x2 = x} (3.5)

+∑{m1(x1) ·m2(x2) | x1∧ x2 =⊥ and x1∨ x2 = x}.

3.4 Two-dimensional reading of belief and plausibility

In this section, we introduce DS models on which we define belief and plausibility of formulas.

Then we discuss different interpretations of the notions of belief and plausibility within the

two-dimensional treatment of evidence of BD logic.

Definition 3.4.1 (DS models and their associated belief functions). Let LBD be the Lindenbaum

algebra for Belnap–Dunn logic over the set of propositional letters Prop. A DS model is

a tuple M = ⟨S,P(S),bel,v+,v−⟩ such that ⟨S,v+,v−⟩ is a BD model and bel is a belief

function on P(S). We denote bel+M : LBD→ [0,1] and bel−M : Lop
BD→ [0,1] the maps such

that, for every ϕ ∈ LBD,

bel+M(ϕ) = bel(|ϕ|+) and bel−M(ϕ) = bel(|ϕ|−) = bel(|¬ϕ|+) = bel+M(¬ϕ).

(3.6)

We drop the subscript whenever there is no ambiguity on the model M we are considering.
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In the classical case (i.e., on a Boolean algebra B), one can define plausibility and belief

function in terms of one another or via the mass function associated to the belief in several

ways. This is why, there is no need to define both plausibility and belief on classical Dempster–

Shafer structures. Indeed, the plausibility of a ∈B can be construed as the lack of belief in its

negation:

pl(a) = 1−bel(∼a) (3.7)

or, equivalently, as the sum of the mass of every statement compatible with a:

pl(a) = ∑
a∧b̸=⊥

m(b). (3.8)

Equations (3.7) and (3.8) are, however, not equivalent on unbounded and free De Morgan

algebras. Consider a free De Morgan algebra A and a (general) mass function m on A. If A

is unbounded, (3.8) cannot be defined. If A is bounded, it gives pl(a) = 1 for every a ∈ A.

Indeed, if A is free, then a∧b =⊥ iff a =⊥ or b =⊥. But m(⊥) = 0, whence pl(a) = 1 for

any a ̸=⊥. On the other hand, (3.7) does not necessarily equal to 1 on every a ̸=⊥ should

one substitute Boolean negation ∼ for the De Morgan ¬.

Definition 3.4.2 (DSpl models and their associated plausibility functions). Let LBD be the

Lindenbaum algebra for Belnap–Dunn logic over the set of propositional letters Prop. A DSpl

model is a tuple M= ⟨S,P(S),bel,pl,v+,v−⟩ such that ⟨S,P(S),bel,v+,v−⟩ is a DS model,

pl is a plausibility function on P(S). We denote pl+M : LBD→ [0,1] and pl−M : Lop
BD→ [0,1]

the maps such that, for every ϕ ∈ LBD,

pl+M(ϕ) = pl(|ϕ|+) and pl−M(ϕ) = pl(|ϕ|−) = pl(|¬ϕ|+). (3.9)

We drop the subscript whenever there is no ambiguity on the model M we are considering.

Note that like in the case of non-standard probabilities (see Lemma 1.4.1), it is equivalent

to define belief and plausibility on the Lindenbaum algebra or on the set of formulas.

Lemma 3.4.1. Let M = ⟨S,P(S),bel,pl,v+,v−⟩ be a DSpl model. bel+ (resp., pl+) is a

general belief (resp., plausibility) function on the Lindenbaum algebra. bel− (resp., pl−) is a
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general belief (resp., plausibility) function on the dual of the Lindenbaum algebra L
op
BD.

Proof. bel and | · |+ are monotone maps, therefore bel+ is monotone. In addition, for every

ϕ1, . . . ,ϕn ∈ LBD, we have

bel+

( ∨
1≤i≤k

ϕi

)
= bel

(∣∣∣∣∣ ∨
1≤i≤k

ϕi

∣∣∣∣∣
+)

= bel

( ⋃
1≤i≤k

|ϕi|+
)

≥ ∑
J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·bel

(⋂
j∈J

|ϕ j|+
)

= ∑
J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·bel

(∣∣∣∣∣∧
j∈J

ϕ j

∣∣∣∣∣
+)

= ∑
J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·bel+
(∧

j∈J

ϕ j

)
.

The proof for pl+ is similar. Now let ϕ,ψ ∈L
op
BD such that ϕ ≤ ψ , that is, such that ψ ⊢BD ϕ .

| · |− is order-reversing w.r.t. ⊢BD, therefore, |ϕ|− ≤ |ψ|−. bel is a monotone map, therefore

bel−(ϕ) = bel(|ϕ|−)≤ bel(|ψ|−) = bel−(ψ). Therefore bel− is monotone. In addition,
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for every ϕ1, . . . ,ϕn ∈LBD, we have

bel−

(
op∨

1≤i≤k

ϕi

)
= bel

(∣∣∣∣∣
op∨

1≤i≤k

ϕi

∣∣∣∣∣
−)

(
∨op denotes the join of Lop

BD)

= bel

(∣∣∣∣∣ ∧
1≤i≤k

ϕi

∣∣∣∣∣
−)

= bel

( ⋃
1≤i≤k

|ϕi|−
)

≥ ∑
J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·bel

(⋂
j∈J

|ϕ j|−
)

= ∑
J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·bel

(∣∣∣∣∣∨
j∈J

ϕ j

∣∣∣∣∣
−)

= ∑
J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·bel

(∣∣∣∣∣
op∧
j∈J

ϕ j

∣∣∣∣∣
−)

= ∑
J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·pl−
(

op∧
j∈J

ϕ j

)
.

Therefore bel− is a general plausibility function on the dual of the Lindenbaum algebra. The

proof for pl− is similar.

The previous lemma shows that each DS model generates a function on the Lindenbaum,

and by extension on the set of formulas of BD logic, that satisfies the axioms of (general)

belief functions from Definition 1.3.3. The following theorem shows that the converse holds as

well: for every (general) belief function on BD formulas, and by extension on the Lindenbaum

algebra, we can define a canonical DS model equipped with a belief function such that both

functions correspond.

Theorem 3.4.1 (Completeness of belief axioms). Let bel be a function on BD formulas

satisfying the axioms of (general) belief function (see Definition 1.3.3). Then there is a

canonical model Mc and a belief function bel′ on the powerset of states of Mc such that

bel(ϕ) = bel′(|ϕ|+).
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Proof. The proof goes along the same lines as the one of Theorem 1.4.1. We start with the

canonical model Mc = ⟨P(Lit),v+c ,v−c ⟩ from Definition 3.2.1. The general belief function

bel on BD formulas can be equivalently represented as a general belief function bel on the

Lindenbaum algebra LBD. Using this general belief function bel on the Lindenbaum algebra

LBD, we define the belief function bel∗ on the uppersets of the poset ⟨P(Lit),⊆⟩ (we assign

bel∗(∅) = 0 and bel∗(P(Lit)) = 1). Then, we finish the proof by applying Lemma 1.3.7.

Notice that unlike in the case of probabilities this lemma does not guarantee uniqueness of the

extension of bel∗.

The proof of the completeness of the plausibility axioms (Theorem 3.4.2) relies on the

following remark that allows us to define a De Morgan negation on the powerset of the domain

of the canonical model that coincides with the BD negation on the extensions of formulas.

Remark 3.4.1 (De Morgan negation on P(P(Lit))). Let w⊆ Lit. We build the set Lit4(w) as

follows

∀p ∈ Prop :



T(p) ∈ Lit4(w) iff p ∈ w,¬p /∈ w

B(p) ∈ Lit4(w) iff p,¬p ∈ w

N(p) ∈ Lit4(w) iff p,¬p /∈ w

F(p) ∈ Lit4(w) iff p /∈ w,¬p ∈ w

(3.10)

E.g., if Prop = {p,q,r} and w = {¬p,q,¬q}, then Lit4(w) = {F(p),B(q),N(r)}. We call

Xp’s ‘4-literals’.

It is clear that, for any A ∈ P(P(Lit)), there is a unique (up to permutations) disjunctive

normal form Fm(X) whose conjunctive clauses contain 4-literals and that every BD formula

ϕ is represented by exactly one A ∈ P(P(Lit)) which we denote S(ϕ).

We now need to define a proper De Morgan negation on ⟨P(P(Lit)),⊆⟩ that extends the

BD negation on LBD formulas. We take A ⊆ P(Lit) and then Fm(A). Now we transform

¬Fm(A) into its disjunctive normal form using the following additional rules

¬X(p)⇝ [¬4X](p) X(p)∧Y(p)⇝ [X∧4 Y](p) X(p)∨Y(p)⇝ [X∨4 Y](p)
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with ¬4, ∨4, and ∧4 following the truth-table definitions of negation, disjunction, and conjunc-

tion in BD. Notice that if A = S(ϕ) for some ϕ ∈LBD, then ¬A = S(¬ϕ).

Theorem 3.4.2 (Completeness of plausibility axioms). Let pl be a function on BD formulas

satisfying the axioms of (general) plausibility function (see Definition 1.3.5). Then, there is a

canonical model Mc and a plausibility function pl′ on the powerset of states of Mc such that

pl(ϕ) = pl′(|ϕ|+).

Proof. We start with the canonical model Mc = ⟨P(Lit),v+c ,v−c ⟩ from Definition 3.2.1. Let

P↑(Lit) denote the distributive lattice generated by the upsets of ⟨P(Lit),⊆⟩. The general plau-

sibility function pl on BD formulas can be equivalently represented as a general plausibility

function pl on the Lindenbaum algebra LBD. Using this general plausibility function pl on

the Lindenbaum algebra LBD, we define the plausibility function pl∗ on P↑(Lit) (we assign

pl∗(∅) = 0 and pl∗(P(Lit)) = 1). Since the lattice P↑(Lit) is isomorphic to the lattice reduct

of L∗BD (the Lindenbaum algebra for BD∗), we can define a De Morgan negation ¬P on it

that coincides with the negation of L∗BD. Therefore, ⟨P↑(Lit),∪,∩,¬P,∅,P(Lit)⟩ is a finite

bounded De Morgan algebra.

Now, consider the function bel∗ : ⟨P↑(Lit),⊆⟩→ [0,1] such that bel∗(S) = 1−pl∗(¬PS)

for every S ∈ P↑(Lit). From Lemma 1.3.5, we know that bel∗ is a belief function on

⟨P↑(Lit),⊆⟩. Let m∗ : ⟨P↑(Lit),⊆⟩ → [0,1] be the mass function of bel∗. We can extend

it to PP(Lit) as follows:

m′ : PP(Lit)→ [0,1]

S 7→

m∗(S) if S ∈ P↑(Lit),

0 otherwise.

The function m′ is clearly a mass function, therefore it defines a belief function bel′ : PP(Lit)→

[0,1] on the distributive lattice ⟨PP(Lit),∪,∩,∅,P(Lit)⟩. Using Remark 3.4.1, we can extend

the De Morgan negation ¬P to the distributive lattice ⟨PP(Lit),∪,∩,∅,P(Lit)⟩. Therefore,

bel′ defines a belief function on the finite De Morgan algebra ⟨PP(Lit),∪,∩,¬P,∅,P(Lit)⟩.

From Lemma 1.3.6, we know that pl′ : PP(Lit)→ [0,1] such that pl′(S) = 1−bel′(¬PS) is
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a plausibility function on (PP(Lit),∪,∩,¬P,∅,P(Lit)). Therefore, pl′ is also a plausibility

function on its lattice reduct (PP(Lit),∪,∩,∅,P(Lit)) and on the underlying Boolean algebra

(PP(Lit),∪,∩,(·)c,∅,P(Lit)). Notice that, for every ϕ ∈ LBD, we have pl′(|ϕ|+) = 1−

bel′(¬P|ϕ|+) = 1−bel∗(¬P|ϕ|+) = pl∗(|ϕ|+) = pl(ϕ).

We have introduced BD models equipped with belief and plausibility functions. Here, we

propose different ways to combine belief and plausibility with a two-dimensional interpretation

in order to introduce modalities in the logical formalism.

Belnapian belief

We consider the following two-dimensional reading of belief. We look at belief as a gen-

eralisation of non-standard probabilities, where the import-export axiom (see axiom (iii)

of Definition 1.4.2) is weakened to the property of being weakly totally monotone (see

Definition 1.3.3). If we consider a probabilistic BD model M= ⟨W,µ,v+,v−⟩, then the two-

dimensional value of the probability of a formula ϕ is (µ(|ϕ|+),µ(|ϕ|−)) and it is interpreted

as follows. Positive probability µ(|ϕ|+) is the degree to which evidence supports truth of ϕ ,

while negative probability µ(|ϕ|−) is the degree to which evidence supports its falsity (which

is the same as positive probability of ¬ϕ).

Following these lines we define a Belnapian belief (bel(|ϕ|+),bel(|ϕ|−)) based on a

DS model M. Analogously to the case of non-standard probabilities the value bel(|ϕ|+)

represents the degree to which the evidence supports ϕ and bel(|ϕ|−) represents the degree to

which the evidence supports its negation. A natural way to introduce plausibility of a formula

ϕ is to use the classical definition via the belief of the negation of ϕ . This definition is correct,

because we know from Lemma 1.3.6 that since bel+ is a general belief function on LBD, then

the map pl+ defined as pl+(ϕ) = 1−bel+(¬ϕ) is a general plausibility function on LBD.

Similarly, pl−(ϕ) = 1−bel−(¬ϕ) is a general plausibility function on L
op
BD. Observe that in

the case of strong contradictory belief in some proposition it can happen that plausibility is

strictly smaller than belief, contrary to the intuition understanding them as upper and lower

bound.

Formally, we can work with belnapian plausibility and take the pair (pl+(ϕ),pl−(ϕ)) as
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the primary notion while belief would be a derived one, but this choice is less appealing from

the point of view of an interpretation. Indeed, in our framework, one can separate pieces of

evidence within three categories: classical (where the evidence for and evidence against add

up exactly to 1), incomplete (the evidence for and evidence against add up to a number smaller

than 1), or contradictory (the evidence for and evidence against add up to a number greater

than 1). Each of these gives us different signals. In particular, classical information might be

intuitively interpreted as indicative of us being on the right track in the investigation. I.e., if

the information on p is classical, then investigation into p can be deemed satisfactory. In this

vein, incomplete information can be interpreted as us needing to investigate p further, while

contradictory information on p shows us that our previous investigation was faulty, whence

we need to re-investigate once again.

Combining belief and plausibility

Independence of positive and negative support which is in the key idea of the Belnap-Dunn

approach gives us more freedom in combining belief and plausibility than in the classical

approach. While in the previous case both positive and negative supports were represented by

the same uncertainty measure, now we discuss the possibility of combining them. The idea

behind the classical belief–plausibility relation is that we can see plausibility of a proposition

as a lack of support for its negation. This motivates our second choice for the representation

of negative support of a proposition: it is not a (straightforward) support of its negation as in

the previous case, but rather a lack of support of the proposition itself.

Formally, we consider a DSpl model containing both belief and plausibility (in general

they might be computed from different mass function, so they are not mutually definable) and

define the positive and negative support pair as (bel+(ϕ),pl−(ϕ)) = (bel+(ϕ),pl+(¬ϕ)).

Belief and plausibility as lower and upper bounds

In this section, we focus on the interpretation of belief and plausibility as a lower and an upper

approximation of the probability of a formula. To do so, we have to consider DSpl models

M= ⟨S,P(S),bel,pl,v+,v−⟩ with both belief and plausibility introduced independently, and
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study the implications of the following property:

bel(Y )≤ pl(Y ), for every Y ⊆ P(S). (3.11)

Within the framework of BD logic, this immediately implies that one cannot define pl via bel

without imposing strong constraints on the valuation of the BD model. Therefore, here we are

studying the meaning of having a general belief function and a general plausibility function

generated by two different mass functions. First, notice that equation (3.11) is equivalent to

having for every v+:

∑
X⊆|p|+

mbel(X)≤ 1− ∑
X⊆|¬p|+

mpl(X). (3.12)

Indeed, from Lemma 1.3.4 and Lemma 1.3.5, we have

bel(|p|+) = ∑
X⊆|p|+

mbel(X)≤ pl(|p|+) = 1−belpl(|¬p|+) = 1− ∑
X⊆|¬p|+

mpl(X).

In addition, since bel and pl are respectively belief and plausibility functions, then we get the

constraint

bel(|p|+) = ∑
X⊆|p|+

mbel(X)≤ ∑
X ̸⊆|p|−

mpl(X) = pl(|p|+), (3.13)

because

bel(|p|+) = ∑
X⊆|p|+

mbel(X)≤ pl(|p|+) = 1− ∑
X⊆|¬p|+

mpl(X)

= ∑
X∈P(S)

mpl(X)− ∑
X⊆|¬p|+

mpl(X)

= ∑
X ̸⊆|¬p|+

mpl(X) = ∑
X ̸⊆|p|−

mpl(X).

We consider the following two-dimensional interpretation for belief and plausibility of ϕ

respectively: Bϕ = (bel+(ϕ),bel−(ϕ)) and Plϕ = (pl+(ϕ),pl−(ϕ)).

Interpretation of the mass functions mbel and mpl Here, B(ϕ) = (x,y) is interpreted as

follows: x = bel+(ϕ) is how much the agent is persuaded that ϕ is true based on the evidence,

and y = bel−(ϕ) is how much the agent is persuaded that ϕ is false based on the evidence.
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Persuasion relies on a wide range of evidence: reliable scientific evidence, but also emotional

reaction to an argument. Therefore, one could ignore the contradictoriness of some evidence

to strengthen one’s opinion and one can ignore scientific evidence due to some bias. Hence,

when computing mbel, the agent uses a weak standard for saying that a piece of evidence

supports some statement and is influenced by its own bias: highly contradictory evidence can

be considered to support a statement and reliable evidence can be ignored.

However, the agent uses a different standard of evidence to decide that a statement is not

plausible. We have pl(|p|+) = ∑X ̸⊆|¬p|+ mpl(X), therefore, p is considered plausible if there

is very little strong evidence supporting ¬p. We interpret this as follows: the agent considers

p plausible, if they are not convinced that ¬p is the case. Conviction is built on ‘reliable’

evidence. The meaning reliable will depend on the context: in a court, it could be the kind of

evidence accepted by the court, in science it could be detailed proofs that have been reviewed

by experts... One can for instance believe that a mathematical statement is false because of

some personal intuition based on experience, even if there is a verified proof of the statement

which makes it not very plausible (but not impossible) that it is false. Indeed, with time, some

proofs are found to be false.

We propose the following interpretation of the mass functions. mbel is computed by asking

the question “does the evidence persuade the agent?”, while mpl is computed by asking the

question “is the evidence considered convincing by some given authority?” In order to get a

better intuition on what is going on, let us have a look at some examples.

s0 : s1 : p s2 : ¬p s3 : p,¬p

Figure 3.1: Canonical model over Prop= {p}.

Example 3.4.1 (Strong belief in p∧¬p). Consider the set of variables Prop = {p}. The

canonical model is in Figure 3.1. Assume that bel(|p∧¬p|+) = 1. Therefore,

∑
X⊆|p∧¬p|+

mbel(X) = ∑
X⊆{s3}

mbel(X) = mbel(∅)+mbel({s3}) = 1.

Since bel is a belief function on P(S), we have mbel(∅) = 0, therefore mbel({s3}) = 1. This

means that based on the available evidence, the agent is persuaded that p∧¬p is the case.
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Notice that

pl(|p∧¬p|+) = ∑
X ̸⊆|p∧¬p|−

mpl(X) = ∑
X ̸⊆|¬(p∧¬p)|+

mpl(X)

= ∑
X ̸⊆|¬p∨p|+

mpl(X) = ∑
X ̸⊆|¬p|+∪|p|+

mpl(X)

= ∑
X ̸⊆|p|−∪|p|+

mpl(X)

Therefore, the condition that bel≤ pl implies that

1 = ∑
X ̸⊆|p|−∪|p|+

mpl(X) = ∑
X ̸⊆{s1,s2,s3}

mpl(X) = mpl(S). (3.14)

Therefore, evidence that is strongly persuasive considering p∧¬p is inconclusive regarding

the plausibility of either p or ¬p.

Example 3.4.2 (Weak belief in either p or ¬p). We still consider the previous model. Assume

now that bel(|p∨¬p|+) = 0. Therefore ∑X⊆{s1,s2,s3}mbel(X) = 0 and mbel({s0,s1,s2,s3}) =

1. The condition that bel≤ pl does not constrain the value of mpl in any way. Therefore, the

available evidence might be convincing from the point of view of a given authority, however it

did not persuade the agent.

3.5 Conclusion

As mentioned before, our long term goal is to develop a modular logical framework to reason

about crisp and/or graded, incomplete and/or inconsistent information. In the previous chapter,

we lay the theoretical ground for that framework, namely the framework of In this chapter,

building on the existing work on non-standard probabilities [KMR21], we generalised the

theory of belief functions to the framework of Belnap–Dunn logic. The main challenge of

that endeavour is to understand how to interpret belief functions and even more plausibility

functions. Indeed, in the classical case, a belief function provides a lower bound and an upper

bound of the probability of an event. Here, using a De Morgan negation rather than a boolean

negation implies that the interpretation of a formula and of its negation are independent.
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Therefore, providing an interpretation for these functions becomes more complex. However,

answering these questions is key to developing a theory of (imprecise) probabilities over

substructural logics.

In the previous section, we discuss how one can combine the belief and the plausibility

assigned to a formula ϕ to form a couple of values that would represent the positive and the

negative information available about ϕ . This work has been the philosophical base to propose

two layered logics to reason with belief functions. In [Bı́l+22, Section 4], my coauthors provide

calculi that formalize reasoning with both non-standard probabilities and belief functions.

This goal can be reached in two ways. The first one is by defining a calculus that allows for

reasoning with statements concerning probabilities or beliefs directly. This is the way it is

done in [FHM90]: the calculi there contain three types of axioms and rules: the ones that

govern the arithmetical part, i.e., the reasoning about inequalities; the ones that axiomatise

probabilities; and the rules and axioms of the logic wherein the reasoning itself occurs, i.e.,

classical propositional logic. The proposed calculus has the advantage of being quite intuitive

and easy to use, however, its axiomatisation is infinite. To address this issue, one can undertake

the second approach and utilise a two-layered modal logic in a similar manner to [BCN20a].

A calculus will then consist of three parts: the rules and axioms of the logic of events or ‘inner

logic’; the ‘outer logic’ that formalises reasoning with evidence; and finally, the modalities that

transform events into probabilistic evidence. While these two approaches may seem different

at the first glance, it is shown in [BCN20a] that they are actually equivalent for the classical

probabilities when the outer-layer logic is taken to be Łukasiewicz logic. [Bı́l+22] provides

both these perspectives on reasoning with non-standard probabilities and belief functions and

shows that they are equivalent in the same way that the two formalisations of reasoning with

classical probabilities are.
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CHAPTER

4
Updating belief

functions

4.1 Introduction

In the previous chapters, we studied and explained belief and plausibilities on Belnap—Dunn

logic. The next natural step is to look at taking new pieces of information into account by

updating the belief functions over Belnap–Dunn logic. In fact, [Hal17] presents different

ways to update belief and plausibility functions in the classical framework. In this section, we

expend our study and discuss how to adapt and interpret those results within the framework of

belief and plausibility functions over Belnap–Dunn logic.

We should clarify that, the model that we use allows us to update belief and plausibility

on BD logic without any need to face the difficulties of defining and updating them on the

Lindenbaum algebras. Probability, belief and plausibility are already defined over distributive

lattices. An option to define updating of these functions is to use the congruence lattices

(quotient algebras), that is, for a distributive lattice L and a ∈ L we consider the congruence

lattice generated by the equivalence relation ≡a as follows and we call this lattice La:

x≡a y iff x∧a = y∧a.

The problem is that La does not behave well in dealing with negation. In addition, even simple

rules such as existing an extension of a probability function from one σ -algebra to a bigger



σ -algebra which we need in defining belief as a lower envelope and then updating them, to

our knowledge, does not work from one sub-De-Morgan algebra to a bigger one. We have

mentioned in the further works the interesting questions that we should answer and study later.

We proceed as follows. First in Section 4.2, we present we recall some lemmas about

belief and plausibility functions and Dempster–Shafer combination rule, and then we present

existing proposals to update belief functions over Boolean algebras. In Section 4.3, we

introduce models for belief and plausibility over BD logic. We discuss how to update belief

and plausibility when getting a new piece of information.

4.2 Preliminaries

In this section, First we explain shortly updating concept and then we present two ways to

update belief functions on Boolean algebras. Notice that in this chapter we use the notations

Bel and Pl when our beleif and plausibility functions are defined over a Boolean algebra and

we use bel and pl when de domain is lattice (or a non-Boolean) structure. First we recall a

classic definition.

Definition 4.2.1. a function µ : P(S)→ [0,1] is called a (finitely additive) probability measure

if it satisfies the following properties:

1. µ(S) = 1

2. µ(A∪B) = µ(A)+µ(B) for A,B disjoint.

We put some definition that we already mentioned and proved in detail to be more reader

friendly and to keep the connection of this chapter.

4.2.1 Belief and plausibility functions

For sake of readability, we recall the definitions of belief functions, plausibility functions and

mass functions and some lemmas which their proofs are presented in the previous chapter. They

are Definition 1.3.3, 1.3.4, 1.3.5 and 3.3.1, and Lemmas 1.3.4, 1.3.6 and 1.3.5, respectively.
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Definition 4.2.2 (Belief function). Let L be a a bounded lattice. A function bel : L→ [0,1]

is called a belief function if the following conditions hold:

• bel(⊥) = 0 and bel(⊤) = 1,

• bel is monotone with respect to L: for every x,y ∈ L, if x≤L y, then bel(x)≤ bel(y),

• bel is weakly totally monotone: for every k ≥ 1 and every a1, . . . ,ak ∈ L, it holds that

bel

( ∨
1≤i≤k

ai

)
≥ ∑

J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·bel

(∧
j∈J

a j

)
. (4.1)

Definition [Mass function] Let L ̸= ∅ be an arbitrary lattice. A mass function on L is a

function m : L→ [0,1] such that ∑
x∈L

m(x) = 1.

Lemma [Mass function associated to a belief function] Let L be a finite lattice and bel :

L→ [0,1] a belief function. Then, there is a mass function mbel : L→ [0,1], called the mass

function associated to bel, such that, for every x ∈ L,

bel(x) = ∑
y≤x

mbel(y). (4.2)

Conversely, for any mass function m on the lattice L, the function belm : L→ [0,1] defined

as

belm(x) = ∑
y≤x

m(y) (4.3)

is a belief function.

Definition [Plausibility functions] Let L be a bounded lattice. pl : L→ [0,1] is called

a plausibility function if the following conditions hold:

• pl(⊥) = 0 and pl(⊤) = 1,

• pl is monotone with respect to L,
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• for every k ≥ 1 and every a1, . . . ,ak ∈ L, it holds that

pl

( ∧
1≤i≤k

ai

)
≤ ∑

J ⊆ {1, . . . ,k}

J ̸=∅

(−1)|J|+1 ·pl

(∨
j∈J

a j

)
. (4.4)

Lemma [Plausibility function associated to a belief function] Let L be a bounded De Morgan

algebra and bel : L→ [0,1] a belief function. Then, the function plbel : L→ [0,1] such that

plbel(x) = 1−bel(¬x) is a plausibility function, called the plausibility function associated

to bel.

Lemma [Mass function associated to a plausibility function] Let L be a bounded De Morgan

algebra, and pl : L→ [0,1] a plausibility function. Then, the function belpl : L→ [0,1] such

that belpl(x) = 1−pl(¬x) is a belief function, called the belief function associated to pl. We

denote mpl the mass function associated to belpl and we call mpl the mass function associated

to pl. Then,

pl(x) = 1− ∑
y≤¬x

mpl(y). (4.5)

Notice that, like in the classical case, a mass function m gives rise to a belief belm and

a plausibility plm function such that plm(x) = 1−belm(¬x). However, here, since ¬ is not

a Boolean negation, we cannot prove anymore that belm(x) ≤ plm(x). In addition, notice

that contrary to the classical case, one cannot rewrite the expression 1−∑y≤¬x mpl(y) as

∑y:y∧x>⊥mpl(y). Indeed, for instance, ¬x≤ ¬x, but ¬x∧ x ̸=⊥.

Belief functions and their mass functions are used to reason about evidence. Dempster–

Shafer combination rule allows merging the information provided by different sources, each

source being described by a mass function.

Definition [Dempster–Shafer combination rule]Let m1 and m2 be two mass functions on

P(S). Dempster–Shafer combination rule computes their aggregation m1⊕m2 : P(S)→ [0,1]
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as follows.

X 7→


0 if X =∅

∑{m1(X1) ·m2(X2) | X1∩X2 = X}
∑{m1(X1) ·m2(X2) | X1∩X2 ̸=∅}

otherwise.

4.2.2 Classical updating of uncertainty measures

A probability function µ on a Boolean algebra P(S) represents the information available about

the subsets of S representing events. Observing B ∈ P(S) changes the probabilities assigned to

the elements of P(S) and leads to a new probability measure µB. There are different strategies

to define this new measure. Here we focus on Bayesian updating defined as µB(C) = µ(B∩C)
µ(B) ,

for every C ∈ P(S). This formula comes from assuming the following conditions for the

Bayesian updating, as you cans see in [Hal17];

1. µB(B) = 0, the worlds in B are impossible.

2. µ(V1)
µ(V2)

= µB(V1)
µB(V2)

for V1,V2 ⊆ B, relative likelihood of worlds in B must remain unchanged.

In this section, we present results from [Hal17]. We recall how Bayesian updating is used

to define conditional upper and lower probabilities, and conditional belief and plausibility,

and how Dempster-Shafer combination rule can be used to define conditional belief and

plausibility. In this section, Pl denotes the plausibility function associated to Bel.

Conditioning upper and lower probabilities

Let A be a non-empty set of probability measures defined over P(S). Then its lower and upper

probabilities (resp. A∗ and A∗) are functions defined on P(S) as follows, for every X ∈ P(S):

A∗(X) = inf{µ(X) : µ ∈A} and A∗(X) = sup{µ(X) : µ ∈A}. (4.6)

Halpern in [Hal17] proposes the following way to update a set of probabilities A using

Bayesian update. A priori, observing B ∈ P(S) leads to the Bayesian updating µB of all

probabilities µ ∈A such that µ(B) ̸= 0, that is, the probability measures consistent with that

observation. Therefore, the update of A is defined only if there is at least one µ ′ ∈A such that
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µ ′(B)> 0. We denote AB = {µB : µ ∈A and µ(B)> 0}. We define the conditional updating

of A∗ and A∗ by B as follows: (A∗)B := (AB)
∗ and (A∗)B := (AB)∗. The second option is

to define the conditioning only if µ(B) > 0 for every µ ∈ A. This condition is a stronger

condition so conditioning on less number of sets is possible. We can interpret this definition as

follows: assuming that each probability measure is a measure given by a source, then we can

condition on B if there is at least one source that consider it possible, while the latter means

we can condition on B if all the sources consider it possible, i.e. µ(B)> 0 for every µ .

Conditioning belief and plausibility as lower and upper probabilities

In the classical case, [Hal17] introduces two ways to update belief functions: (1) via the

representation of belief functions as lower probabilities (see Theorem 4.2.1), and (2) via their

associated mass functions (see Proposition 4.2.2). One of the theorems that we need is the

following theorem which characterises bel based on upper and lower probabilities.

Theorem 4.2.1. [Hal17, Theorem 2.6.1] Let Bel be a belief function defined on P(S) and

MBel = {µ : µ(X)≥ Bel(X), for all X ∈ P(S)}. Then Bel= (MBel)∗ and Pl= (MBel)
∗.

The set MBel can be updated when it contains at least one measure such that µ(B)> 0,

that is when PlBel(B)> 0.

Definition 4.2.3. Let Bel : P(S)→ [0,1] be a belief function and Pl is associated plausibility

function such that Pl(X) = 1−Bel(X) for every X ∈ P(S). Then conditioning of Bel and

Pl on B is defined as follows: BelB(X) = ((MBel)∗)B(X) = ((MBel)B)∗(X) and PlB(X) =

((MBel)
∗)B(X) = ((MBel)B)

∗(X).

In section 4.3.3 and as we discussed in the previous chapter, we will work with models con-

taining belief and plausibility functions that are not interdefinable. The following proposition

characterises those functions in terms of lower and upper probabilities.

Proposition 4.2.1 (Belief and plausibility as an upper/lower probability). Let f be a function

defined on P(S) and M f = {µ : µ(X) ≥ f (X), for all X ∈ P(S)} and N f = {µ : µ(X) ≤

f (X), for all X ∈ P(S)}. Now let Bel and Pl be belief and plausibility functions defined
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independently on P(S). Then,

Pl= (MBelPl)
∗ = (NPl)

∗ and Bel= (MBel)∗ = (NPlBel)∗

where BelPl and PlBel are respectively the belief and plausibility associated to Pl and Bel

(see Lemmas 1.3.6 and 1.3.5).

Proof. Recall that BelPl(X) = 1− Pl(X). Based on Theorem 4.2.1, we have BelPl =

(MBelPl)∗ and Pl= (MBelPl)
∗. Notice that, for every X ∈ P(S),

µ(X)≤ Pl(X) ⇐⇒ µ(X)≤ 1−BelPl(X)

⇐⇒ BelPl(X)≤ 1−µ(X)

⇐⇒ BelPl(X)≤ µ(X)

⇐⇒ BelPl(X)≤ µ(X)

⇐⇒ BelPl(X)≤ µ(X)

Therefore,

MBelPl = NPl and (MBelPl)
∗ = (NPl)

∗

The proof for Bel is similar.

Defining conditioning via lower and upper probabilities is not very practical from a

computational perspective. The following theorem gives us an explicit formula.

Theorem 4.2.2. Let Bel : P(S)→ [0,1] be a belief function. Let Pl be its associated plausi-

bility function. Suppose that Pl(B)> 0. Then,

BelB(X) =


1 if Pl(X ∩B) = 0,

Bel(X ∩B)
Bel(X ∩B)+Pl(X ∩B)

if Pl(X ∩B)> 0.

PlB(X) =
Pl(X ∩B)

Pl(X ∩B)+Pl(X ∩B)
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Proof. [Hal17, Theorem 3.8.2] proves the formula for Bel and the fact that

PlB(X) =


0 if Pl(X ∩B) = 0,

Pl(X ∩B)
Pl(X ∩B)+Pl(X ∩B)

if Pl(X ∩B)> 0.

Notice that Pl(X ∩B)+Pl(X ∩B)> 0 for every X ∈ P(S). Indeed, since Pl is a plausibility

function, we have Pl(A∪C)≤ Pl(A)+Pl(C)−Pl(A∩C) for every A,C ∈ P(S). If A∩C = /0,

then Pl(A∪C) ≤ Pl(A)+ Pl(C). Hence, if A = X ∩B and C = X ∩B, we have Pl(B) ≤

Pl(X ∩B)+ Pl(X ∩B). Since Pl(B) > 0, we have Pl(X ∩B)+ Pl(X ∩B) > 0, for every

X ∈ P(S). Therfore, if Pl(X ∩B) = 0, we have Pl(X∩B)
Pl(X∩B)+Pl(X∩B) = 0 as requiered.

Conditioning belief and plausibility via mass functions

In this case, observing B is encoded via the mass function mB as mB(B) = 1 and 0 otherwise.

The update BelB of a belief function Bel by B is computed via Demspter-Shafer combination

rule and its associated mass function is mBel⊕mB. To distinguish between this method and the

above method we use BelB and PlB for the conditional belief and plausibility obtained by the

latter approach and we call it DS-conditioning. We have the following explicit formulas for

BelB and PlB.

Proposition 4.2.2. [Hal17, Theorem 3.8.5] BelB and PlB are defined if Pl(B)> 0. For every

X ∈ P(S),

BelB(X) =
Bel(X ∪B)−Bel(B)

1−Bel(B)
and PlB(X) =

Pl(X ∩B)
Pl(B)

.

4.3 Updating belief and plausibility over Belnap-Dunn logic

4.3.1 Models for belief and plausibility over Belnap-Dunn logic

Recalling that a DS model is a tuple M = ⟨S,P(S),Bel,v+,v−⟩ such that ⟨S,v+,v−⟩ is a

BD model and Bel is a belief function on P(S). From this model as we said we obtain
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bel+ : LBD→ [0,1] and bel− : Lop
BD→ [0,1] as follows for every ϕ ∈ LBD,

bel+(ϕ) = Bel(|ϕ|+) and bel−(ϕ) = Bel(|ϕ|−) = Bel(|¬ϕ|+)

Recall that as we are defining belief of a formula via its extension, we obtain mutual definability

of positive and negative belief: bel−(ϕ) = bel+(¬ϕ). This property mirrors how the negation

works in BD logic and in non-standard probabilities. It would be possible to define plausibility

analogously to the classical case, that is Pl(X) = 1−Bel(X). The plausibility of ϕ would

then be equal to the sum of the masses of the sets of states that at least partially support ϕ , i.e.

∑{m(A) | A∩|ϕ|+ ̸= /0}. (4.7)

This definition does not have an intuitive interpretation, as in the sum (1) we can take into

account sets of states that all positively satisfy both ϕ and ¬ϕ and (2) we do not take into ac-

count sets of states that satisfy neither ϕ nor ¬ϕ . However, not having information about ϕ , in

general, is not an argument to say that it is implausible. Therefore, we introduced DSpl models

where belief and plausibility are not inter-definable as a tuple M= ⟨S,P(S),Bel,Pl,v+,v−⟩

such that ⟨S,P(S),Bel,v+,v−⟩ is a DS model, Pl is a plausibility function on P(S). This

model gives us pl+ : LBD → [0,1] and pl− : Lop
BD → [0,1] the maps such that, for every

ϕ ∈ LBD,

pl+(ϕ) = Pl(|ϕ|+) and pl−(ϕ) = Pl(|ϕ|−) = Pl(|¬ϕ|+).

In the standard approach both belief and plausibility use in fact the same information rep-

resented by the mass function, but deal with it in a different way. While we can see belief

as the amount of information which directly supports the statement in question, plausibility

represents the amount of information which does not contradict the statement. As Halpern

says: “Plausm(U) can be thought of as the sum of the probabilities of the evidence that is

compatible with the actual world being in U .” ([Hal17], p. 38). This idea is captured in

the definition of plausibility via mass function: pl(A) = ∑
A∩B̸=∅

m(B). We can also see belief

and plausibility as approximations, as a lower and an upper bound for the ‘true’ probability:

bel(A)≤ p(A)≤ pl(A). While in the classical case all these readings coincide, in the case
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of BD logic they do not, which gives us several possibilities of defining belief/plausibility

pairs, which is explained in the previous chapter. Notice that, since A and ¬A are independent

elements, if we consider a belief function bel and its associated plausibility function plbel,

then we can have plbel(A)< bel(A). Therefore, asking for bel(A)≤ pl(A) usually implies

that bel and pl are associated to different mass functions. This can be interpreted as follows:

an agent has a fixed set of pieces of evidences, however, they do not read the evidence the

same way when they ask themselves “does the evidence strongly convince me that ϕ is the

case?” or “is the evidence coherent with the fact that ϕ might be the case?”.

4.3.2 Updating belief

A natural question that arises is what is the behaviour of the positive and negative belief

functions induced by the above models, when one learns a new piece of information. Learning

something about ϕ means finding a positive or negative piece of information or even a

contradictory piece of information about ϕ . Here, we directly adapt the conditioning on belief

function proposed in [Hal17]. Indeed, the belief function Bel in a DS models is defined

on a powerset algebra. The non-classical behaviour with respect to the negation of bel+

and bel− comes from the non-classical interpretation of formulas. Recall that in BD logic,

|ϕ|− = |¬ϕ|+, therefore, we only study updating with the positive interpretation of a formula.

Conditioning belief as lower measure

If we look at belief as the lower approximation of the “real” probability function, then we

know that the “real” probability function is in the set MBel. Therefore, to update the belief

after learning that ϕ is the case, one can compute the Bayesian update of every probability in

MBel. In that framework, this boils down to ignoring information states (that is, the elements

s ∈ S) not supporting ϕ , on the other words, we just consider the sources that support ϕ . Here

we have constraints in choosing the formulas that we can do the updating on them. In fact,

based on Theorem 4.2.1, the belief function Bel defined on P(S), is equal to (MBel)∗, where

MBel = {µ : µ(X)≥ Bel(X), for all X ∈ P(S)}. Updating on a formula ϕ does make sense

if 1−Bel(|ϕ|+)> 0. Hence if 1−Bel(|ϕ|+)> 0, then one can define the conditional belief
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on ϕ as follows: for every X ∈ P(S),

Bel|ϕ|+(X) = ((MBel)|ϕ|+)∗(X)

which gives us the following conditional belief function on formulas, for each ψ ∈LBD,

bel+|ϕ|+(ψ) = Bel|ϕ|+(|ψ|+) = ((MBel)|ϕ|+)∗(|ψ|+).

In what follows, for sake of readability, we will write bel+|ϕ| and Bel|ϕ| instead of Bel|ϕ|+ and

bel+|ϕ|+ . Based on Theorem 4.2.2, we have the following explicit formula

bel+|ϕ|(ψ) =


1 if Bel(|ϕ|+∪|ψ|+) = 1,

Bel(|ψ|+∩|ϕ|+)
1+Bel(|ψ|+∩|ϕ|+)−Bel(|ϕ|+∪|ψ|+)

if Bel(|ϕ|+∪|ψ|+)< 1.

Notice that since the update is performed on Bel, both bel+ and bel− are affected by

the update. In addition, bel+|ϕ|(ϕ) = 1 as expected. However, in general, bel+|ϕ|(¬ϕ) ̸= 0,

because |ϕ|+∩|¬ϕ|+ ̸= /0.

Conditioning belief via mass functions

If we interpret belief as representing the information coming from pieces of evidence, then one

can also update the belief function Bel via its associated mass function mBel and Dempster-

Shafer combination rule. We call that method DS conditioning. A piece of evidence fully

supporting exactly ϕ is usually represented by the mass function m|ϕ|+ : P(S)→ [0,1] such

that m|ϕ|+(|ϕ|+) = 1 and m|ϕ|+(X) = 0 otherwise. Therefore, the updating of Bel by finding

positive information about ϕ , denoted (Bel)|ϕ|, is the belief function associated to the mass

function mBel⊕m|ϕ|+ . Then, based on Proposition 4.2.2, we have:

Proposition 4.3.1. The belief function (bel+)|ϕ| is defined if 1− Bel(|ϕ|+) > 0, and, for

every ψ ∈ LBD,

(bel+)|ϕ|(ψ) = (Bel)|ϕ|(|ψ|+) = Bel(|ψ|+∪|ϕ|+)−Bel(|ϕ|+)
1−Bel(|ϕ|+)

.

It is well-known that DS combination rule is associative and commutative [Sha76], there-
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fore DS conditioning of belief functions is commutative and associative as well. Notice that,

for every ϕ,ψ ∈ LBD, we have m|ϕ|+⊕m|ψ|+ = m|ψ|+⊕m|ϕ|+ = m|ϕ|+∩|ψ|+ = m|ϕ∧ψ|+ , which

implies that ((bel+)|ϕ|)|ψ| = ((bel+)|ψ|)|ϕ| = ((bel+)|ϕ∧ψ|). This means that, with DS

conditioning, finding both a piece of information supporting ϕ and a piece of information sup-

porting ¬ϕ is equivalent to finding a contradictory piece of information about ϕ . Here again,

notice that (bel+)|ϕ|(¬ϕ) can be different than 0 because some states s ∈ S can support both

ϕ and ¬ϕ . In addition, it is worth noticing, that Bel|ϕ|(X)≤ Bel|ϕ|(X) for every X ⊆ S (see

[Hal17, Theorem 3.8.6]). Therefore, bel+ϕ (X)≤ (bel+)|ϕ|(X) and bel−ϕ (X)≤ (bel−)|ϕ|(X).

4.3.3 Updating plausibility

Recall that the interpretation of ϕ and ¬ϕ are independent, therefore, when we consider a

mass function m and its associated belief and plausibility functions belm and plm, it is often

the case that belm(ϕ) ̸≤ plm(ϕ) = 1−belm(¬ϕ). Hence, if one wants to reason with a belief

function and a plausibility function that provide an interval that contains the probability of ϕ ,

one needs to consider a belief and a plausibility function that are not associated to the same

mass function, which we explained in the previous chapter in detail. Then, the question of

updating the plausibility function directly, without going through its associated belief function

arises. To do so, we introduce DSpl models: M = ⟨S,P(S),Bel,Pl,v+,v−⟩. As mentioned

above, we can focus on updating based on positive information about a formula ϕ .

Conditioning plausibility as upper measure

Based on Proposition 4.2.1, Pl is an upper probability, that is, Pl= (MBelPl)
∗. So again, one

can define conditioning on a formula ϕ when Pl(ϕ)> 0 as follows for every ψ ∈LBD:

pl+|ϕ|(ψ) = ((MBelPl)|ϕ|+)
∗(|ψ|+). (4.8)

From Lemma 4.2.2, we have the following explicit formula for updating plausibilities.

Proposition 4.3.2. Let ϕ be a formula such that Pl(|ϕ|+)> 0,

pl+|ϕ|(ψ) =
Pl(|ψ|+∩|ϕ|+)

Pl(|ψ|+∩|ϕ|+)+Pl(|ψ|+∩|ϕ|+)
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Notice that, as expected, pl+|ϕ|(ϕ) = 1. But when we observe positive information about ϕ ,

pl+ is not the only belief function affected by this new piece of evidence, pl− also changes.

Here using the fact that |ψ|− = |¬ψ|+, we have:

pl−|ϕ|(ψ) = ((MBelPl)|ϕ|+)
∗(|ψ|−) = ((MBelPl)|ϕ|+)

∗(|¬ψ|+) = pl+|ϕ|(¬ψ).

Conditioning plausibility via mass function

DS conditioning can be applied to plausibility functions via their associated mass functions

mpl (see Lemma 1.3.5). The mass function associated to the update of Pl based on some piece

of information positively supporting ϕ is computed via Dempster-Shafer combination rule

as follows: mpl⊕ m|ϕ|+ . Based on Proposition 4.2.2, we get the following formula for the

corresponding plausibility function (pl+)|ϕ| over formulas.

Proposition 4.3.3. The function (pl+)|ϕ| is defined if Pl(|ϕ|+)> 0, and, for every ψ ∈LBD,

we have

(pl+)|ϕ|(ψ) =
Pl(|ψ|+∩|ϕ|+)

Pl(|ϕ|+)
.

4.4 Conclusion

This work presents methods to update belief and plausibility functions within the framework of

BD logic. Recall that BD logic was introduced to reason about incomplete and contradictory

information. In DS models, even though the underlying logic is non-classical, namely BD logic,

the belief and plausibility functions are defined over the powerset of states. Therefore, we can

import the techniques for updating belief functions from the classical logic literature. This

work is in fact a first step. Indeed, we wish to look at belief and plausibility functions over De

Morgan algebras to get a better understanding of the implication of combining belief functions

and BD logic. Recall that De Morgan algebras provide the algebraic semantics for BD logic,

and that there is no duality between BD models and De Morgan algebras. Therefore, there is

no way to directly import our results on frames to De Morgan algebras. A natural first step will

be to study the mathematical properties of belief and plausibility functions over De Morgan
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algebras, and to establish whether they can be represented as lower and upper probabilities

over sets of non-standard probabilities. This would open various options to update the belief.

Indeed, [KMR21] presents different ways to update non-standard probabilities, among which

two ways that generalise Bayesian update. In addition, Dempster–Shafer combination rule

can straight forwardly be transferred to De Morgan algebras (see [Bı́l+22]) which provides a

natural way to update belief functions over De Morgan algebras. However, it remains to be

checked whether this method is equivalent to DS conditioning on DS models.
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Conclusion and future work

In this thesis we have studied reasoning with incomplete and contradictory information.

This topic has been studied at length regarding crisps pieces of information. However,

handling contradictory evidence while dealing with graded pieces of information such as for

instance probabilities remain a difficult question. A well established logic to reason with crisp

incomplete and contradictory information is Belnap–Dunn logic. Here, we expand on the work

in [KMR21] to integrate belief and plausibility functions to their proposal for probabilistic

Belnap–Dunn models. This work is made within a research project aiming at developing a

modular logical framework based on two-layered logics that would allow to formalise a wide

variety of ’probabilistic reasoning’. The modularity is understood as having a framework able

to handle agents whose reasoning is based on different logics (such as for instance classical

logic, Belnap–Dunn, relevant logics...) and on different kinds of evidence (crisp, probabilistic,

statistical, ...).

In [Bı́l+20; Bı́l+22], we lay the ground to this project and present a first formalisation of

probabilistic reasoning over Belnap—Dunn logic and belief functions. However a lot remains

to be done. [Bı́l+22] leaves open questions on how to interpret plausibility. We could tackle

this question by looking at relevant case studies, but also by relying on the correspondence

between non-standard probabilities and four valued probabilities [Dun10; DK19; KMR21].

Another research direction to define more intuitive notions of belief and plausibility within

the framework of Belnap—Dunn logic would be to work within a functionally complete

expansion of Belnap—Dunn logic [SO14; OS15]. Indeed, Belnap—Dunn logic does not allow
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to talk about the set of information states that satisfy exactly p (that is that positively satisfy p

and do not negatively satisfy ¬p) or that satisfy neither p nor ¬p, therefore when we define

plausibility of a formula we cannot say that we want to consider the masses of the sets of

states that contain at least a state that satisfy exactly p or that satisfies neither p nor ¬p.

In Chapter 4, we discuss conditional update on belief functions via the frame semantics. In

this approach we start from a belief function on the powerset of states and use the non-classical

valuations of the Belnp—Dunn model to define belief and plausibility over the formulas of

Belnp—Dunn logic. An alternative strategy would be to directly define belief and plausibility

functions on De Morgan algebras. With this approach combining belief functions via their

associated mass functions and Dempster—Shafer combination rule is straight forward. But

can lead to different results on the frames and on the algebras. Applying Dempster-Shafer’s

rule on the frames and on the algebras are not equivalent. On the other hand direct updating

of probabilities, beliefs and plausibilities on the algebra based on lower envelopes, is still

unknown for us. We have spent some time to understand these updating methods on the

algebra and we think that investigating and comparing the two above methods on the algebra

and on the set of states can be an interesting subject to continue. In fact, Studying the update

directly on the algebra will probably help us to get a better insight on its interpretation within

Belnap—Dunn logic.

In addition, as we mentioned earlier, we aim at getting a better understanding of reasoning

with probabilistic (or graded) information over substructural logics. Therefore many questions

remain to be studied. How to interpret more general notions of probabilities such as lower

and upper probabilities [Dem67; WF82], inner and outer measures [Hal50] and credal sets

[Lev83]? Which axioms for probabilities would make sense if we consider propositional

logics with an implication?
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My contributions

The main results and contributions of this manuscript are in Chapters 2,3 and 4 which are

based on the following papers, respectively:

1. M. Bı́lková, S. Frittella, O. Majer, and S. Nazari. “Belief based on inconsistent informa-

tion”. In: International Workshop on Dynamic Logic. 2020, pp. 68–86.

2. M. Bı́lková, S. Frittella, D. Kozhemiachenko, O. Majer, and S. Nazari. “Reasoning with

belief functions over Belnap–Dunn logic”. In: preprint, arXiv:2203.01060.

3. S. Frittella, O. Majer, and S. Nazari. “Toward updating belief functions over Bel-

nap–Dunn logic”. In: accepted in Belief 2022, arXiv:2205.15159. (2022).

and also I have given and I will give the following presentations:

1. Probabilistic Reasoning Based on Incomplete and Inconsistent Information, Logica

2021, Hejnice, The Czech Republic, 27 September–1 October 2021.

2. Belief based on inconsistent information, Dynamic Logic: New Trends and Applications,

Prague, the Czech Republic, October 2020.

3. Belief 2022, 7th International Conference on Belief Functions, October 26-28, 2022,

Paris, France.

4. LIFA 2022, 31ème rencontre francophones sur la logique floue et ses application, du 20

au 21 octobre 2022, Toulouse France.
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5. Non-standard probabilities and belief functions over Belnap-Dunn logic, Workshop On

Non-Classical Logic And Probabilistic Reasoning, Bourges, France, 17-18 February

6. Belief based on inconsistent information, Dynamic Logic: New Trends and Applications,

Prague, the Czech Republic, October 2020.

7. Belief based on inconsistent information: INSA Centre Val de Loire, LIFO, group

seminar, Bourges, France, September 2021.

The first article was was the beginning of the project that we write in collaboration with

Marta Bı́lková, Sabine Frittella, Ondrej Majer. we had many group discussion, we developed

the case studies together, I developed the formalisms on the aggregation strategies, concerning

section 3.2, I contributed to the discussions to understand which kind of logics we needed,

but I did not contribute on the technical aspects of the logical formalisation. I had regular

discussion with my coauthors, they gave me continuous feedback on my progress and advised

me on technical and presentation issues, and we wrote the paper together.

The second paper which is a submitted almost a year ago to APAL (Annals of Pure and

Applied Logic) written with the same co-authors plus Daniil Kozhemiachenko. I focused on

studying the imprecise probability tools, belief and plausibility on the Belnap–Dunn logic.

This work appears in the sections 2 and 3. The last section of the article presents logics to

formalise reasoning with non-standard probabilities, belief and plausibility over Belnap–Dunn

logic. I attended the discussion on that part of the project, but I did not contribute technically

to this section. Concerning the first sections which I put in the manuscript, they are the result

that we extract from weekly discussions. We edited them together and submitted the final

version aggregated with the logical formalism.

The last article in which I focus on conditioning was my proposal and is accepted in the

international peer reviewed conference Belief 2022. A French translation of the article is

accepted in the francophone peer reviewed conference Rencontres francophones sur la logique

floue et ses applications 2022. Sabine Frittella and Ondrej Majer helped me and gave me

continuous feed-backs to complete the paper and edit the final version.

During all these papers, we had some other results that we did not have enough time to
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make them into papers, specially the two last papers contains many unanswered questions or

partially answered questions that will be continued in appropriate time.
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[Bar00] J.-P. Barthélemy. “Monotone functions on finite lattices: An ordinal approach to

capacities, belief and necessity functions”. In: Preferences and Decisions under

Incomplete Knowledge. Studies in fuzziness and soft computing. Heidelberg:

Physica-Verlag HD, 2000, pp. 195–208.

[BC16] Juliana Bueno-Soler and Walter Carnielli. “Paraconsistent probabilities: consis-

tency, contradictions and Bayes’ theorem”. In: Entropy 18.9 (2016), p. 325.
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